首页> 美国卫生研究院文献>Frontiers in Chemistry >Noble Metal Based Alloy Nanoframes: Syntheses and Applications in Fuel Cells
【2h】

Noble Metal Based Alloy Nanoframes: Syntheses and Applications in Fuel Cells

机译:贵金属基合金纳米框架:燃料电池的合成与应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Noble metal nanostructures are being used broadly as catalysts for energy conversion in fuel cells. To overcome the future energy crises, fuel cells are anticipated as clean energy sources because they can be operated at low temperature, their energy conversion is high and their carbon release is almost zero. However, an active and stable electrocatalyst is essential for the electrochemical reactions in fuel cells. Therefore, properties of the nanostructures greatly depend on the shape of the nanostructures. Individual as well as interaction properties are greatly affected by changes in the surface area of the nanostructures. By shape controlled synthesis, properties of the nanostructures could be further enhanced by increasing the surface area or active sites for electrocatalysts. Therefore, an efficient approach is needed for the fabrication of nanostructures to increase their efficiency, activity, or durability in fuel cells by reducing the usage of noble metals. Different types of hollow nanostructures until now have been prepared including nanoboxes, nanocages, nanoshells, nanoframes (NFs), etc. NFs are the hollow unique three-dimensional structure which have no walls—they only contain corners or edges so they have large surface area. In electrocatalytic reactions, the molecules involved in the reaction can easily reach the inner surface of the nanoframes, thus noble metals' utilization efficiency increases. NFs usually have high surface area, greater morphological and compositional stabilities, allowing them to withstand harsh environmental conditions. By considering the current challenges in fabrication of noble metal based alloy NFs as electrocatalysts, this review paper will highlight recent progress, design, and fabrication of noble metal alloy NFs through different strategies—mainly photocatalytic template, electrodeposition, Kirkendall effect, galvanic replacement, chemical/oxidative etching, combination of both and other methods. Then, electrochemical applications of NFs in fuel cells toward formic acid, methanol, ethanol, oxygen reduction reaction as well as bifunctional catalyst will also be highlighted. Finally, we will summarize different challenges in the fabrication of highly proficient nanocatalysts for the fuel cells with low cost, high efficiency and high durability, which are the major issues for the highly commercial use of fuel cells in the future.
机译:贵金属纳米结构被广泛用作燃料电池中能量转换的催化剂。为了克服未来的能源危机,燃料电池有望成为清洁能源,因为它们可以在低温下运行,其能量转化率很高,而碳排放几乎为零。然而,活性和稳定的电催化剂对于燃料电池中的电化学反应至关重要。因此,纳米结构的性质极大地取决于纳米结构的形状。纳米结构表面积的变化极大地影响了个体以及相互作用特性。通过形状控制的合成,可以通过增加电催化剂的表面积或活性位点来进一步增强纳米结构的性能。因此,需要一种有效的方法来制造纳米结构,以通过减少贵金属的使用来提高其在燃料电池中的效率,活性或耐久性。到目前为止,已经准备了各种类型的空心纳米结构,包括纳米盒,纳米笼,纳米壳,纳米框架(NFs)等。NFs是空心的独特三维结构,没有壁,它们仅包含角或边缘,因此具有较大的表面积。 。在电催化反应中,反应中涉及的分子很容易到达纳米框架的内表面,从而提高了贵金属的利用效率。 NF通常具有较高的表面积,更大的形态和组成稳定性,使其可以承受恶劣的环境条件。考虑到当前在制备贵金属基合金NFs作为电催化剂方面面临的挑战,本文将重点介绍贵金属合金NFs通过不同策略(主要是光催化模板,电沉积,柯肯达尔效应,电镀替代,化学方法)的最新进展,设计和制备。 /氧化蚀刻,以及其他方法的组合。然后,还将重点介绍燃料电池中NFs在甲酸,甲醇,乙醇,氧还原反应以及双功能催化剂方面的电化学应用。最后,我们将总结在低成本,高效率和高耐用性的燃料电池高效纳米催化剂的制造中所面临的不同挑战,这是未来燃料电池商业化应用的主要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号