首页> 美国卫生研究院文献>Frontiers in Chemistry >Effect of Surface and Bulk Properties of Mesoporous Carbons on the Electrochemical Behavior of GOx-Nanocomposites
【2h】

Effect of Surface and Bulk Properties of Mesoporous Carbons on the Electrochemical Behavior of GOx-Nanocomposites

机译:介孔碳的表面和体积性质对GOx-纳米复合材料电化学行为的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biofuel cell (BFC) electrodes are typically manufactured by combining enzymes that act as catalysts with conductive carbon nanomaterials in a form of enzyme-nanocomposite. However, a little attention has been paid to effects of the carbon nanomaterials' structural properties on the electrochemical performances of the enzyme-nanocomposites. This work aims at studying the effects of surface and bulk properties of carbon nanomaterials with different degrees of graphitization on the electrochemical performances of glucose oxidase (GOx)-nanocomposites produced by immobilizing GOx within a network of carbon nanopaticles. Two types of carbon nanomaterials were used: graphitized mesoporous carbon (GMC) and purified mesoporous carbon (PMC). Graphitization index, surface functional groups, hydrophobic properties, and rate of aggregation were measured for as-received and acid-treated GMC and PMC samples by using Raman spectrometry, X-ray photoelectron spectroscopy (XPS), contact angle measurement, and dynamic light scattering (DLS), respectively. In addition to these physical property characterizations, the enzyme loading and electrochemical performances of the GOx-nanocomposites were studied via elemental analysis and cyclic voltammetry tests, respectively. We also fabricated BFCs using our GOx-nanocomposite materials as the enzyme anodes, and tested their performances by obtaining current-voltage (IV) plots. Our findings suggest that the electrochemical performance of GOx-nanocomposite material is determined by the combined effects of graphitization index, electrical conductivity and surface chemistry of carbon nanomaterials.
机译:生物燃料电池(BFC)电极通常通过将充当催化剂的酶与酶-纳米复合材料形式的导电碳纳米材料相结合来制造。然而,已经很少注意碳纳米材料的结构性质对酶-纳米复合材料的电化学性能的影响。这项工作旨在研究具有不同石墨化程度的碳纳米材料的表面和整体性能对通过将GOx固定在碳纳米颗粒网络内产生的葡萄糖氧化酶(GOx)-纳米复合材料的电化学性能的影响。使用两种类型的碳纳米材料:石墨化的中孔碳(GMC)和纯化的中孔碳(PMC)。通过使用拉曼光谱,X射线光电子能谱(XPS),接触角测量和动态光散射来测量接收和酸处理的GMC和PMC样品的石墨化指数,表面官能团,疏水性和聚集速率(DLS)。除这些物理性质表征外,还分别通过元素分析和循环伏安法研究了GOx-纳米复合材料的酶负载和电化学性能。我们还使用GOx纳米复合材料作为酶阳极制造了BFC,并通过获得电流-电压(IV)图来测试了它们的性能。我们的发现表明,GOx-纳米复合材料的电化学性能取决于石墨化指数,电导率和碳纳米材料的表面化学的综合影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号