首页> 美国卫生研究院文献>Frontiers in Chemistry >Oxygen Vacancies in Oxide Nanoclusters: When Silica Is More Reducible Than Titania
【2h】

Oxygen Vacancies in Oxide Nanoclusters: When Silica Is More Reducible Than Titania

机译:氧化物纳米簇中的氧空位:当二氧化硅比二氧化钛更易还原时

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Oxygen vacancies are related to specific optical, conductivity and magnetic properties in macroscopic SiO2 and TiO2 compounds. As such, the ease with which oxygen vacancies form often determines the application potential of these materials in many technological fields. However, little is known about the role of oxygen vacancies in nanosized materials. In this work we compute the energies to create oxygen vacancies in highly stable nanoclusters of (TiO2)N, (SiO2)N, and mixed (TixSi1−xO2)N for sizes between N = 2 and N = 24 units. Contrary to the results for bulk and surfaces, we predict that removing an oxygen atom from global minima silica clusters is energetically more favorable than from the respective titania species. This unexpected chemical behavior is clearly linked to the inherent presence of terminal unsaturated oxygens at these nanoscale systems. In order to fully characterize our findings, we provide an extensive set of descriptors (oxygen vacancy formation energy, electron localization, density of states, relaxation energy, and geometry) that can be used to compare our results with those for other compositions and sizes. Our results will help in the search of novel nanomaterials for technological and scientific applications such as heterogeneous catalysis, electronics, and cluster chemistry.
机译:氧空位与宏观SiO2和TiO2化合物的特定光学,电导率和磁性有关。这样,氧空位形成的容易性通常决定了这些材料在许多技术领域中的应用潜力。然而,关于氧空位在纳米材料中的作用知之甚少。在这项工作中,我们计算了在N = 2至N = 24单位大小的高度稳定的(TiO2)N,(SiO2)N和混合(TixSi1-xO2)N纳米簇中产生氧空位的能量。与体积和表面的结果相反,我们预测从整体上最小的二氧化硅簇中去除一个氧原子比从各自的二氧化钛物种中去除能量上更为有利。这种意外的化学行为显然与这些纳米级系统中末端不饱和氧的固有存在有关。为了充分表征我们的发现,我们提供了广泛的描述符(氧空位形成能,电子局部化,态密度,弛豫能和几何形状),可用于将我们的结果与其他成分和尺寸的结果进行比较。我们的结果将有助于寻找用于技术和科学应用的新型纳米材料,例如多相催化,电子学和团簇化学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号