首页> 美国卫生研究院文献>Experimental Diabetes Research >Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control
【2h】

Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control

机译:新发1型糖尿病患者疾病进展的遗传风险评分模型:胰岛表达和细胞因子调控的候选基因的遗传负荷增加预示血糖控制较差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on β-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic control and residual β-cell function in type 1 diabetes (T1D). As gene expression may represent an intermediate phenotype between genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally regulated by proinflammatory cytokines would be the best predictors of disease progression. Two-thirds of 46 GWAS candidate genes examined were expressed in human islets, and 11 of these significantly changed expression levels following exposure to proinflammatory cytokines (IL-1β + IFNγ + TNFα) for 48 h. Using the GWAS single nucleotide polymorphisms (SNPs) from each locus, we constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and gene ontology (GO) analyses revealed that several of the 11 candidate genes have overlapping biological functions and interact in a common network. Our results may help predict disease progression in newly diagnosed children with T1D which can be exploited for optimizing treatment.
机译:全基因组关联研究(GWAS)已确定40多个1型糖尿病风险基因座。这些基因座在疾病进展期间对β细胞功能的临床影响尚不清楚。我们旨在测试遗传风险评分是否可以预测1型糖尿病(T1D)的血糖控制和残余β细胞功能。由于基因表达可能代表遗传变异和疾病之间的中间表型,我们假设T1D位点内的基因在胰岛中表达并由促炎性细胞因子进行转录调控将是疾病进展的最佳预测指标。在检测的46个GWAS候选基因中,有三分之二在人的胰岛中表达,其中11个在暴露于促炎细胞因子(IL-1β+IFNγ+TNFα)48 h后显着改变了表达水平。使用来自每个基因座的GWAS单核苷酸多态性(SNP),我们根据新诊断为T1D的儿童中携带的风险等位基因的累积数量,构建了遗传风险评分。诊断后的第一年内,每携带其他风险等位基因,HbA1c水平均显着升高。网络和基因本体论(GO)分析显示,这11个候选基因中有几个具有重叠的生物学功能,并在一个公共网络中相互作用。我们的结果可能有助于预测新诊断的T1D儿童的疾病进展,可将其用于优化治疗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号