class='head no_bottom_margin' id='sec1title'>Int'/> Cytosolic Quality Control of Mislocalized Proteins Requires RNF126 Recruitment to Bag6
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Cytosolic Quality Control of Mislocalized Proteins Requires RNF126 Recruitment to Bag6
【2h】

Cytosolic Quality Control of Mislocalized Proteins Requires RNF126 Recruitment to Bag6

机译:定位错误的蛋白质的胞质质量控制要求RNF126招聘到Bag6

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionProtein quality control is essential for cellular homeostasis (). Failure to promptly recognize and degrade defective or superfluous proteins leads to their accumulation. This accumulation of aberrant proteins can have several consequences, including protein aggregation, inappropriate interactions, damage to cellular membranes, induction of stress responses, and many others. Each of these consequences can be detrimental at both the cellular and organismal level, and is causative of numerous human diseases (). Thus, deciphering the molecular basis of protein misfolding diseases requires an understanding of the cell’s various protein quality control pathways.Proteins in most, if not all, cellular compartments are subjected to quality control. The cytosol is the largest cellular compartment and houses the most diverse proteome. The range of proteins it handles, and the myriad ways in which they can be defective, requires a highly flexible quality control system. This challenging task is not handled by a single pathway, but by multiple parallel pathways dedicated to different types of aberrant proteins (). The pathways range widely, including ribosome-associated systems for partially synthesized proteins (), chaperone-assisted pathways of degradation (), and autophagy-based pathways for large multiprotein aggregates (). A current goal in the quality control field is to define the full complement of pathways, the components that comprise each pathway, and their respective client specificities.Earlier work has shown that one cellular process requiring quality control is protein translocation into organelles. For example, import into the endoplasmic reticulum is not perfectly efficient, resulting inevitably in at least some polypeptides mislocalized to the cytosol (). This mislocalization can be enhanced during ER stress (), by rare mutations in signal peptides (), and possibly by mutant translocation machinery (). Importantly, protein mislocalization can lead to disease in both animal models and humans (). Thus, cells are likely to have evolved mechanisms to deal with mislocalized proteins (MLPs) to avoid their accumulation.Previous studies have shown that ∼10%–20% of mammalian prion protein (PrP) is mislocalized to the cytosol, and this population of PrP is rapidly degraded via the ubiquitin-proteasome system (). Using mislocalized PrP as a model substrate, an in vitro system was used to search for protein factors involved in its ubiquitination (). A combination of crosslinking and functional analyses led to the identification of the heterotrimeric Bag6 complex as a factor that interacts specifically with the unprocessed hydrophobic domains of PrP and other MLPs (). Bag6 complex was necessary for maximal MLP ubiquitination in vitro, and for efficient degradation of mislocalized PrP in cultured cells. Thus, the Bag6 complex was proposed to be a component of the quality control pathway for MLPs.Parallel studies widened the scope of Bag6 in protein quality control. In one set of studies, Bag6 was found to interact with proteins dislocated from the endoplasmic reticulum (href="#bib7" rid="bib7 bib47" class=" bibr popnode">Claessen and Ploegh, 2011; Wang et al., 2011). In this case, Bag6 appears to interact after substrate ubiquitination, and is needed to maintain client solubility until delivery to the proteasome. Other studies found Bag6 associated with newly synthesized polyubiquitinated proteins that were proposed to generate peptides for MHC class I presentation (href="#bib51" rid="bib51" class=" bibr popnode">Minami et al., 2010). Collectively, these findings implicate Bag6 in multiple quality control pathways (href="#bib26" rid="bib26" class=" bibr popnode">Kawahara et al., 2013), although its exact role in any of them remains poorly understood.The heterotrimeric Bag6 complex is composed of Bag6, TRC35, and Ubl4A (href="#bib33" rid="bib33" class=" bibr popnode">Mariappan et al., 2010). In addition to mediating ubiquitination, the Bag6 complex was shown to be involved in the capture and loading of tail-anchored (TA) membrane proteins onto the targeting factor TRC40 (href="#bib33" rid="bib33" class=" bibr popnode">Mariappan et al., 2010). The TRC35 and Ubl4A subunits appear to be conserved in all eukaryotes and participate in the TA targeting pathway (href="#bib46" rid="bib46" class=" bibr popnode">Wang et al., 2010). By contrast, the Bag6 subunit appears to be a later evolutionary acquisition that has embellished a targeting factor complex with protein quality control capability. It was therefore proposed that the Bag6 complex is at the center of a triage reaction that routes hydrophobic proteins toward either targeting (in the case of TA proteins) or degradation (for other hydrophobic proteins) (href="#bib21" rid="bib21" class=" bibr popnode">Hessa et al., 2011).Photocrosslinking and mutagenesis experiments demonstrated that Bag6 interacts with hydrophobic domains (href="#bib21" rid="bib21 bib32 bib33" class=" bibr popnode">Hessa et al., 2011; Leznicki et al., 2010; Mariappan et al., 2010). The client then becomes ubiquitinated in a reaction that does not seem to require TRC35 or Ubl4A, but does need the ubiquitin-like (Ubl) domain at the N terminus of Bag6 (href="#bib21" rid="bib21" class=" bibr popnode">Hessa et al., 2011). These observations led to a model in which the Ubl domain recruits a ubiquitin ligase to target Bag6-associated proteins for degradation. However, alternative explanations, such as Bag6 itself acting as an atypical ligase, could not be excluded. Thus, the mechanism of ubiquitination in the MLP degradation pathway was unknown. Here, we have continued our investigation of MLP degradation and identify RNF126 as a Bag6-dependent ubiquitin ligase in this pathway.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介蛋白质质量控​​制对于细胞体内平衡至关重要()。无法及时识别和降解有缺陷或多余的蛋白质会导致其积累。异常蛋白质的这种积累可能会产生多种后果,包括蛋白质聚集,不适当的相互作用,对细胞膜的损害,应激反应的诱导等。这些后果中的每一个在细胞和机体水平上都是有害的,并且是许多人类疾病的病因。因此,破译蛋白质错误折叠疾病的分子基础需要了解细胞的各种蛋白质质量控​​制途径。大多数(即使不是全部)细胞区隔中的蛋白质也要进行质量控制。胞质溶胶是最大的细胞区室,并容纳最多样化的蛋白质组。它处理的蛋白质范围以及可能造成缺陷的多种方式,需要高度灵活的质量控制系统。这项艰巨的任务不是通过单个途径来完成,而是通过致力于不同类型异常蛋白的多个平行途径来解决。途径范围很广,包括部分合成蛋白质的核糖体相关系统(),伴侣伴侣降解的途径()和大型多蛋白质聚集体的基于自噬的途径()。质量控制领域的当前目标是定义途径的完整补充,构成每种途径的组成部分以及它们各自的客户特异性。早期的工作表明,需要质量控制的一种细胞过程是蛋白质易位到细胞器中。例如,导入内质网不是完全有效的,不可避免地导致至少一些多肽误定位到胞质溶胶()。这种内错定位可以在内质网应激期间(),信号肽中的罕见突变()以及突变体移位机制()来增强。重要的是,蛋白质错误定位会导致动物模型和人类疾病。因此,细胞可能已经进化出机制来处理错误定位的蛋白质(MLP)以避免其积累。先前的研究表明,约有10%–20%的哺乳动物病毒蛋白质(PrP)被错误地定位在细胞质中, PrP通过泛素-蛋白酶体系统迅速降解。使用定位错误的PrP作为模型底物,使用体外系统搜索涉及其泛素化的蛋白质因子。交联和功能分析的结合导致了异三聚体Bag6复合物的鉴定,该复合物是与PrP和其他MLP的未处理疏水域特异性相互作用的因子()。 Bag6复合物是体外最大MLP泛素化和有效降解培养细胞中错误定位的PrP所必需的。因此,提出将Bag6复合物作为MLP质量控制途径的组成部分。并行研究扩大了Bag6在蛋白质质量控​​制中的范围。在一组研究中,发现Bag6与从内质网脱位的蛋白质相互作用(href="#bib7" rid="bib7 bib47" class=" bibr popnode"> Claessen and Ploegh,2011; Wang等。 ,2011 )。在这种情况下,Bag6似乎在底物泛素化后发生相互作用,并且需要维持客户的溶解度直到递送至蛋白酶体。其他研究发现Bag6与新合成的多泛素化蛋白有关,这些蛋白被提议生成I类MHC肽(href="#bib51" rid="bib51" class=" bibr popnode"> Minami等,2010 )。总的来说,这些发现暗示Bag6参与了多种质量控制途径(href="#bib26" rid="bib26" class=" bibr popnode"> Kawahara等,2013 )。异源三聚体Bag6复合物由Bag6,TRC35和Ubl4A组成(href="#bib33" rid="bib33" class=" bibr popnode"> Mariappan等,2010 )。除介导泛素化作用外,Bag6复合物还参与了尾锚(TA)膜蛋白的捕获并将其装载到靶向因子TRC40上(href =“#bib33” rid =“ bib33” class =“ bibr popnode“> Mariappan等人,2010 )。 TRC35和Ubl4A亚基似乎在所有真核生物中都是保守的,并参与TA靶向途径(href="#bib46" rid="bib46" class=" bibr popnode"> Wang等人,2010 )。相比之下,Bag6亚基似乎是后来的进化产物,它修饰了具有蛋白质质量控​​制能力的靶向因子复合物。因此,有人提出Bag6复合物处于分流反应的中心,该分流反应会将疏水性蛋白质导向靶向(对于TA蛋白而言)或降解(针对其他疏水性蛋白质)(href =“#bib21” rid = “ bib21” class =“ bibr popnode”> Hessa等人,2011 )。光交联和诱变实验表明Bag6与疏水域相互作用(href =“#bib21” rid =“ bib21 bib32 bib32 bib33”类=“ bibr popnode”> Hessa等,2011; Leznicki等,2010; Mariappan等,2010 )。然后,客户端似乎不需要TRC35或Ubl4A,但确实需要在Bag6 N末端的类泛素(Ubl)域进行泛素化(href =“#bib21” rid =“ bib21”类=“ bibr popnode”> Hessa等人,2011 )。这些观察结果导致了一个模型,其中Ubl结构域募集泛素连接酶以靶向与Bag6相关的蛋白质进行降解。但是,不能排除其他解释,例如Bag6本身充当非典型连接酶。因此,在MLP降解途径中泛素化的机制尚不清楚。在这里,我们继续我们对MLP降解的研究,并将RNF126识别为该途径中依赖于Bag6的泛素连接酶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号