class='head no_bottom_margin' id='sec1title'>Int'/> A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite
【2h】

A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite

机译:基因组规模的矢量资源使疟疾寄生虫中的高通量反向遗传筛选成为可能。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe rate at which the genomes of intracellular malaria parasites can be modified has remained largely unchanged since methods for gene targeting by homologous recombination were developed in Plasmodium (). Some notable advances have recently improved transfection efficiency in P. falciparum through the application of zinc finger nucleases () and CRISPR-Cas9 (). However, no currently available method is efficient enough to enable reverse genetic screens, and transposon mutagenesis in P. falciparum is at present well short of genome saturation (). As a result, more than half of the protein coding genes in Plasmodium genomes still lack functional annotation.Genome-wide collections of mutants or genetic modification vectors have greatly facilitated the discovery of gene functions in model organisms (). In malaria parasites, in contrast, efforts to scale up reverse genetics have suffered from a combination of low rates of homologous recombination and a high content of adenine and thymine (A+T) nucleotides that renders Plasmodium DNA difficult to engineer in E. coli. A malaria parasite of rodents, P. berghei, offers the most robust system for genetic manipulation with relatively high transfection efficiency (). In this species homologous integration can be boosted further by transfecting linear vectors with long (4–8 kb) homology arms (). Despite its high A+T content (>77%), P. berghei genomic DNA (gDNA) can be propagated efficiently in E. coli as large genomic inserts of up to 20 kb using a low-copy bacteriophage N15-derived linear plasmid with covalently closed hairpin telomeres (). In contrast to high-copy circular plasmids, an N15-based arrayed gDNA library achieved nearly complete genome coverage with sufficient insert size to represent the majority of P. berghei genes in their entirety. Clones from this library can be converted into gene targeting and tagging vectors in 96 parallel liquid cultures using robust protocols (), which exploit highly efficient homologous recombination mediated by the Red/ET recombinase system of lambda phage in E. coli ().To accelerate the functional analysis of all P. berghei genes we here present a genome-scale community resource of long-homology genetic modification vectors that are individually quality controlled by sequencing and carry gene-specific molecular barcodes. The availability of more than 2,000 genome modification vectors raises the possibility of generating a large library of cloned and genotyped P. berghei mutants of the type that has enabled global genetic screens in yeast (). However, in P. berghei the lack of continuous in vitro culture of blood stages would limit the utility of such a clone collection. Signature-tagged mutagenesis, whereby thousands of mutants are simultaneously screened in a pooled approach (), therefore offers a more attractive strategy for scaling up reverse genetics in P. berghei.We have used the modification vector resource to enable such systematic screens for a Plasmodium parasite. We demonstrate that cotransfecting multiple gene knockout vectors in the same electroporation reproducibly generates complex pools of barcoded P. berghei mutants, and develop a barcode sequencing (barseq) approach () to phenotype the growth rates of all mutants within the pool over the course of an infection. To validate the approach, we compared a barseq knockout screen of protein kinases with the conventional kinome screen by . This comparison showed high reproducibility with previous data, but the sensitivity and robustness of the barseq approach also identified additional targetable genes. Our analysis demonstrates the power of barseq screening to robustly provide growth-rate phenotypes for dozens of mutants in single mice, and opens up the possibility for large-scale reverse genetic screens for multiple areas of Plasmodium biology.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介自细胞内疟原虫的基因组可被修饰的速率在很大程度上保持不变在恶性疟原虫中开发了通过同源重组靶向基因的方法。最近有一些显着进展通过应用锌指核酸酶()和CRISPR-Cas9()提高了恶性疟原虫的转染效率。但是,目前尚无足够有效的方法来进行反向遗传筛选,恶性疟原虫中的转座子诱变目前远未达到基因组饱和度()。结果,疟原虫基因组中超过一半的蛋白质编码基因仍然缺乏功能注释。全基因组范围的突变体或基因修饰载体的收集极大地促进了模型生物中基因功能的发现()。相比之下,在疟原虫中,努力扩大反向遗传学的努力是由于同源重组率低,腺嘌呤和胸腺嘧啶(A + T)核苷酸含量高,使得疟原虫DNA难以在大肠杆菌中进行工程改造。啮齿类动物伯氏疟原虫的疟原虫为遗传操作提供了最强大的系统,具有相对较高的转染效率()。在该物种中,可以通过用长(4–8 kb)同源臂转染线性载体来进一步增强同源整合。尽管其高A + T含量(> 77%),但是使用低拷贝噬菌体N15衍生的线性质粒,伯氏疟原虫基因组DNA(gDNA)可以有效地在大肠杆菌中以高达20 kb的大基因组插入片段的形式高效繁殖。共价闭合的发夹端粒()。与高拷贝环状质粒相反,基于N15的阵列gDNA文库实现了几乎完整的基因组覆盖,具有足够的插入大小,可以代表整个伯氏疟原虫基因的大部分。使用健壮的协议(),可以将该库中的克隆转化为96种平行液体培养物中的基因靶向和标记载体(),该协议利用大肠杆菌中λ噬菌体的Red / ET重组酶系统介导的高效同源重组()。在对所有伯氏疟原虫基因进行功能分析的过程中,我们在这里介绍了长同源性基因修饰载体的基因组规模社区资源,这些载体通过测序分别进行质量控制并带有基因特异性分子条形码。超过2,000种基因组修饰载体的可用性提高了产生一个庞大的克隆和基因型伯氏疟原虫突变体文库的可能性,该突变体能够在酵母中进行全球遗传筛选。但是,在伯氏疟原虫中缺乏连续的体外血液培养会限制这种克隆收集的效用。带有特征标记的诱变,通过汇集方法同时筛选成千上万的突变体,因此为扩大伯氏疟原虫的反向遗传学提供了更具吸引力的策略。我们已使用修饰载体资源对此类< em> Plasmodium 寄生虫。我们证明了在同一电穿孔中共转染多个基因敲除载体可重复产生条形码化的 P的复杂库。 berghei 突变体,并开发出条形码测序(barseq)方法()以表型显示感染过程中池中所有突变体的生长速率。为了验证该方法,我们通过对比了蛋白激酶的bareq基因敲除筛选与常规的kinome筛选。该比较显示了与先前数据的高度可重复性,但是bareq方法的敏感性和鲁棒性还确定了其他可靶向的基因。我们的分析表明,bareq筛选能够为单个小鼠中的数十个突变体稳健地提供生长速率表型,并为大规模 Plasmodium 生物学领域的大规模反向遗传筛选开辟了可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号