首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Dynamics of Translation of Single mRNA Molecules In Vivo
【2h】

Dynamics of Translation of Single mRNA Molecules In Vivo

机译:体内单个mRNA分子翻译的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPrecise tuning of the expression of each gene in the genome is critical for many aspects of cell function. The level of gene expression is regulated at multiple distinct steps, including transcription, mRNA degradation, and translation (). Regulation of all of these steps in gene expression is important, though the relative contribution of each control mechanism varies for different biological processes (, , , , ).Measuring the translation rate from individual mRNAs over time provides valuable information on the mechanisms of translation and translational regulation. In vitro experiments, mainly using bacterial ribosomes, have revealed exquisite information on ribosome translocation dynamics at the single molecule level (, , , , , ), but such methods have not yet been applied in vivo. In contrast, a genome-wide snapshot of the translational efficiency of endogenous mRNAs in vivo can be obtained through the method of ribosomal profiling (, ). However, this method requires averaging of many cells and provides limited temporal information because of the requirement to lyse cells to make these measurements. Single cell imaging studies have succeeded in measuring average protein synthesis rates (, href="#bib6" rid="bib6" class=" bibr popnode">Brittis et al., 2002, href="#bib16" rid="bib16" class=" bibr popnode">Han et al., 2014, href="#bib26" rid="bib26" class=" bibr popnode">Leung et al., 2006, href="#bib37" rid="bib37" class=" bibr popnode">Tanenbaum et al., 2015, href="#bib47" rid="bib47" class=" bibr popnode">Yu et al., 2006), observing the first translation event of an mRNA (href="#bib15" rid="bib15" class=" bibr popnode">Halstead et al., 2015), localizing sub-cellular sites of translation by co-localizing mRNAs and ribosomes (href="#bib23" rid="bib23" class=" bibr popnode">Katz et al., 2016, href="#bib45" rid="bib45" class=" bibr popnode">Wu et al., 2015), and staining nascent polypeptides with small molecule dyes (href="#bib30" rid="bib30" class=" bibr popnode">Rodriguez et al., 2006).While ribosomal profiling and other recently developed methods have provided many important new insights into the regulation of translation, many questions cannot be addressed using current technologies. For example, it is unclear to what extent different mRNA molecules produced in a single cell from the same gene behave similarly. Many methods to study translation in vivo require averaging of many mRNAs, masking potential differences between individual mRNA molecules. Such differences could arise from differential post-transcriptional regulation, such as nucleotide modifications (href="#bib9" rid="bib9" class=" bibr popnode">Choi et al., 2016, href="#bib42" rid="bib42" class=" bibr popnode">Wang et al., 2015), differential transcript lengths through use of alternative transcriptional start sites (href="#bib31" rid="bib31" class=" bibr popnode">Rojas-Duran and Gilbert, 2012) or polyadenylation site selection (href="#bib12" rid="bib12" class=" bibr popnode">Elkon et al., 2013, href="#bib14" rid="bib14" class=" bibr popnode">Gupta et al., 2014), differences in ribonucleic protein (RNP) composition (href="#bib45" rid="bib45" class=" bibr popnode">Wu et al., 2015), distinct intracellular localization (href="#bib18" rid="bib18" class=" bibr popnode">Hüttelmaier et al., 2005), or different states of RNA secondary structure (href="#bib2" rid="bib2" class=" bibr popnode">Babendure et al., 2006, href="#bib24" rid="bib24" class=" bibr popnode">Kertesz et al., 2010). Heterogeneity among mRNA molecules could have a profound impact on the total amount of polypeptide produced, as well as the localization of protein synthesis, but remains poorly studied. Furthermore, the extent to which translation of single mRNA molecules varies over time is also largely unknown. For example, translation may occur in bursts, rather than continuously (href="#bib38" rid="bib38" class=" bibr popnode">Tatavarty et al., 2012, href="#bib47" rid="bib47" class=" bibr popnode">Yu et al., 2006), and regulation of protein synthesis may occur by modulating burst size and/or frequency, which could occur either globally or on each mRNA molecule individually. In addition, the ability of an mRNA molecule to initiate translation may vary with time or spatial location, for example as cells progress through the cell cycle (href="#bib34" rid="bib34" class=" bibr popnode">Stumpf et al., 2013, href="#bib37" rid="bib37" class=" bibr popnode">Tanenbaum et al., 2015) or undergo active microtubule-based transport to particular cellular destinations (href="#bib17" rid="bib17" class=" bibr popnode">Holt and Schuman, 2013). Such regulation could involve changes in the rates of translation initiation and/or the ribosome elongation. To address these questions, new methods are required for visualizing translation of single mRNA molecules in live cells over time.Here, we present a method, based on the SunTag fluorescence tagging system that we recently developed (href="#bib36" rid="bib36" class=" bibr popnode">Tanenbaum et al., 2014), for measuring the translation of single mRNA molecules over long periods of time. Using this system, we have measured initiation, elongation, and stalling on individual mRNA molecules and have uncovered unexpected heterogeneity among different mRNA molecules encoded by the same gene within a single cell. Our system will be widely applicable to the study of mRNA translation in live cells.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介精确调整基因组中每个基因的表达对于细胞的许多方面都是至关重要的功能。基因表达水平在多个不同的步骤进行调节,包括转录,mRNA降解和翻译()。尽管每种控制机制的相对作用因不同的生物过程而异(,,,,),但对基因表达中所有这些步骤的调节都很重要。测量随时间变化的单个mRNA的翻译率可提供有关翻译和表达机制的有价值的信息。翻译规则。在主要使用细菌核糖体的体外实验中,已揭示出有关单分子水平(````````)的核糖体易位动力学的精妙信息,但此类方法尚未在体内应用。相反,可以通过核糖体谱分析(,)方法获得全体内内源性mRNA的翻译效率的全基因组快照。但是,由于需要裂解细胞以进行这些测量,因此该方法需要平均许多细胞并提供有限的时间信息。单细胞成像研究已成功地测量了平均蛋白质合成率(,, href="#bib6" rid="bib6" class=" bibr popnode"> Brittis et al。,2002 ,href =“ #bib16“ rid =” bib16“ class =” bibr popnode“> Han等人,2014 ,href="#bib26" rid="bib26" class=" bibr popnode"> Leung等人。 ,2006 ,href="#bib37" rid="bib37" class=" bibr popnode"> Tanenbaum等人,2015 ,href =“#bib47” rid =“ bib47 “ class =” bibr popnode“> Yu等人,2006 ),观察了mRNA的第一个翻译事件(href="#bib15" rid="bib15" class=" bibr popnode"> Halstead等人,2015 ),通过共同定位mRNA和核糖体来定位翻译的亚细胞位点(href="#bib23" rid="bib23" class=" bibr popnode"> Katz等。 ,2016 ,href="#bib45" rid="bib45" class=" bibr popnode"> Wu等人,2015 ),并用小分子染料(href =“#bib30” rid =“ bib30” class =“ bibr popnode”> Rodriguez等人,2006 )。同时进行了核糖体分析和其他最近开发的方法为翻译规范提供了许多重要的新见解,使用当前技术无法解决许多问题。例如,尚不清楚单个细胞中从同一基因产生的不同mRNA分子在何种程度上表现相似。研究体内翻译的许多方法需要平均许多mRNA,以掩盖单个mRNA分子之间的潜在差异。这种差异可能是由于转录后的调控差异引起的,例如核苷酸修饰(href="#bib9" rid="bib9" class=" bibr popnode"> Choi等人,2016 ,href =“#bib42” rid =“ bib42” class =“ bibr popnode”> Wang等人,2015 ),通过使用其他转录起始位点(href =“#bib31” rid = “ bib31” class =“ bibr popnode”> Rojas-Duran和Gilbert,2012 )或聚腺苷酸化位点选择(href="#bib12" rid="bib12" class=" bibr popnode"> Elkon等) 。,2013 ,href="#bib14" rid="bib14" class=" bibr popnode"> Gupta等人,2014 ),核糖核酸蛋白(RNP)组成的差异(< a href =“#bib45” rid =“ bib45” class =“ bibr popnode”> Wu等人,2015 ),不同的细胞内定位(href =“#bib18” rid =“ bib18” class = “ bibr popnode”>Hüttelmaier等,2005 )或不同状态的RNA二级结构(href="#bib2" rid="bib2" class=" bibr popnode"> Babendure等, 2006 ,href = “#bib24” rid =“ bib24” class =“ bibr popnode”> Kertesz等人,2010 )。 mRNA分子之间的异质性可能对产生的多肽总量以及蛋白质合成的位置产生深远影响,但研究仍很薄。此外,单个mRNA分子的翻译随时间变化的程度也是很大程度上未知的。例如,翻译可能会突然发生,而不是连续发生(href="#bib38" rid="bib38" class=" bibr popnode"> Tatavarty et al。,2012 ,href =“# bib47“ rid =” bib47“ class =” bibr popnode“> Yu等人,2006 ),并且可以通过调节爆发大小和/或频率来调节蛋白质的合成,这种爆发可能在全球范围内发生,也可能在每个频率上发生单独的mRNA分子。此外,mRNA分子启动翻译的能力可能会随时间或空间位置而变化,例如随着细胞在整个细胞周期中的进展(href="#bib34" rid="bib34" class=" bibr popnode"> Stumpf等人,2013 ,href =“#bib37” rid =“ bib37” class =“ bibr popnode”> Tanenbaum等人,2015 ),或通过基于微管的主动传输将其传输到特定的蜂窝目的地(href =“#bib17” rid =“ bib17” class = “ bibr popnode”> Holt和Schuman,2013 )。这种调节可能涉及翻译起始速率和/或核糖体伸长率的变化。为了解决这些问题,需要新的方法来可视化随时间推移活细胞中单个mRNA分子的翻译。在此,我们提出一种基于我们最近开发的SunTag荧光标记系统的方法(href =“#bib36” rid =“ bib36” class =“ bibr popnode”> Tanenbaum等人,2014 ),用于长时间测量单个mRNA分子的翻译。使用该系统,我们已经测量了单个mRNA分子的起始,延伸和停滞,并且在单个细胞中发现了由同一基因编码的不同mRNA分子之间的意外异质性。我们的系统将广泛应用于活细胞中mRNA的翻译研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号