class='head no_bottom_margin' id='sec1title'>Int'/> Impact of MicroRNA Levels Target-Site Complementarity and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Impact of MicroRNA Levels Target-Site Complementarity and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression
【2h】

Impact of MicroRNA Levels Target-Site Complementarity and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression

机译:MicroRNA水平靶位点互补性和协同性对竞争内源RNA调控基因表达的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMicroRNA (miRNA) levels have long been known to influence the magnitude of target-gene repression (). More recent studies point out that the number of predicted binding sites present in the transcriptome also affects the activity of miRNAs (, ). Consistent with this concept, strong overexpression of natural or artificial RNAs that contain miRNA sites can titrate miRNAs away from natural targets, thereby reducing the repression of these transcripts (, , , , ). These observations are extended by the notion that a site-containing transcript found naturally within cells can act as competing endogenous RNA (ceRNA) and regulate other site-containing transcripts by increasing or decreasing the miRNA activity (, , , ).The ceRNA hypothesis remains controversial due to the lack of a plausible explanation for how modulating the expression of a single endogenous gene could perceptibly influence miRNA activity across all of its target sites. Two recent studies have empirically assessed the ceRNA hypothesis by quantifying the number of miRNA response elements (MREs) that must be added to detect ceRNA-mediated gene regulation (, ). Both studies agree that determining the number of transcriptomic miRNA-binding sites is crucial for evaluating the potential for ceRNA regulation and that miRNA-binding sites are generally higher than the number of miRNA molecules. However, they differ in two aspects: (1) the experimental approaches used to determine the number of “effective” transcriptomic miRNA-binding sites and (2) the impact miRNA concentrations have on the number of binding sites that must be added to detect target gene derepression (derepression threshold [DRT]).The discrepancies between these studies lead to different conclusions with respect to the likelihood of observing ceRNA effects in natural settings. The first study concluded that changes in ceRNAs must approach a miRNA’s target abundance before they can exert a detectable effect on gene regulation (). Furthermore, because target abundance for a typical miRNA is very high, regulation of gene expression by ceRNAs is unlikely to occur in differentiated cells under physiological settings or most disease settings (href="#bib11" rid="bib11" class=" bibr popnode">Denzler et al., 2014). In addition, the study shows that the DRT remains constant when miRNA activity is reduced. A subsequent review presents a mathematical model that assesses binding-site occupancy and competition at different assumed target abundances (href="#bib22" rid="bib22" class=" bibr popnode">Jens and Rajewsky, 2015). This in silico model predicts that only global and collective changes in binding sites can produce an effect on target abundance large enough to detectably derepress target genes, which concurs with the results and conclusions of href="#bib11" rid="bib11" class=" bibr popnode">Denzler et al. (2014).The second study presents a “hierarchical affinity model,” in which the miRNA abundance is proposed to determine the respective susceptibility to ceRNA-mediated regulation (href="#bib6" rid="bib6" class=" bibr popnode">Bosson et al., 2014). In this model, the suggestion is that, as miRNA concentration increases and Ago-miRNA complexes spread to weaker and weaker sites (with affinity inferred from the site hierarchy of 8-nt > 7-nt > 6-nt site), the effective target-site abundance grows too large for physiological ranges of ceRNA expression to influence repression. By this reasoning, physiological ceRNA changes can nevertheless influence repression by a more modestly expressed miRNA, with its correspondingly lower effective target-site abundance. Moreover, the use of high-throughput cross-linking to detect targets leads to lower target-abundance estimates, which further increases the plausibility of ceRNA regulation (href="#bib6" rid="bib6" class=" bibr popnode">Bosson et al., 2014). However, experimental support for the proposed influence of miRNA concentration is correlative and lacks direct experimental evidence, such as manipulation of miRNA activity and measurement of resulting DRT changes.href="#bib11" rid="bib11" class=" bibr popnode">Denzler et al. (2014) propose that sites of all different affinities contribute to the effective target abundance, regardless of the miRNA concentration. Here, we call the model of href="#bib11" rid="bib11" class=" bibr popnode">Denzler et al. (2014) the “mixed-affinity model” to distinguish it from the hierarchical affinity model. The mixed-affinity model recognizes that a high-affinity site will contribute more to effective target-site abundance than a low-affinity site (href="#bib11" rid="bib11" class=" bibr popnode">Denzler et al., 2014). However, in aggregate, low-affinity sites, because of their high numbers within the transcriptome, still make a substantial contribution to the effective target-site abundance for each miRNA—even for more modestly expressed miRNAs.Other studies suggest that the ceRNA crosstalk of two transcripts is stronger and more specific when they share a large number of sites to different miRNA seed families. This hypothesis emerged from observations in cancer models, in which the expression of a particular oncogene correlates with its pseudogene, and both transcripts share a high sequence homology in their 3′ UTRs and are reported to co-regulate each other through a ceRNA mechanism (href="#bib28" rid="bib28" class=" bibr popnode">Poliseno et al., 2010, href="#bib23" rid="bib23" class=" bibr popnode">Karreth et al., 2015). Even if transcripts containing multiple sites can exert an additive effect of independently acting binding sites, sites for each miRNA family would still have to individually reach the high thresholds necessary to observe target-gene derepression. Therefore the simple presence of multiple binding sites alone would not be expected to be sufficient to increase the likelihood of a ceRNA effect, unless the sites acted through a cooperative mechanism. Although the effect of cooperativity has been studied in the context of target-gene repression (href="#bib12" rid="bib12" class=" bibr popnode">Doench et al., 2003, href="#bib18" rid="bib18" class=" bibr popnode">Grimson et al., 2007, href="#bib30" rid="bib30" class=" bibr popnode">Saetrom et al., 2007, href="#bib7" rid="bib7" class=" bibr popnode">Broderick et al., 2011), it is unclear whether closely spaced miRNA-binding sites can sequester miRNA in a non-independent manner and hence increase the prospects of a ceRNA effect.In this study, we examine the impact that miRNA levels have on the DRT and thereby address a key difference between the hierarchical affinity and mixed-affinity models. We then analyze the influence of target-site complementarity on ceRNA-mediated gene regulation and examine the extent to which closely spaced miRNA-binding sites can cooperatively influence the potency of target-gene derepression. Finally, we develop a mathematical model, which incorporates both the mixed-affinity binding and the repressive activities of miRNAs to recapitulate our results.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 MicroRNA(miRNA)水平早已影响靶基因抑制的强度()。最近的研究指出,转录组中存在的预测结合位点的数量也会影响miRNA的活性。与该概念一致,包含miRNA位点的天然或人工RNA的强烈过表达可以使miRNA远离天然靶标,从而减少了这些转录物的抑制(“,,,”)。这些观察结果通过以下概念得到了扩展:在细胞内自然发现的含位点的转录本可以充当竞争性内源RNA(ceRNA),并通过增加或降低miRNA活性来调节其他含位点的转录本(``,``,'')。ceRNA假说仍然存在由于缺乏合理的解释,即如何调节单个内源基因的表达如何可感知地影响其所有靶位点的miRNA活性而引起争议。最近的两项研究通过定量检测ceRNA介导的基因调控必须添加的miRNA反应元件(MRE)的数量,以经验评估了ceRNA假设。两项研究都同意,确定转录组miRNA结合位点的数量对于评估ceRNA调控的潜力至关重要,而且miRNA结合位点通常高于miRNA分子的数量。但是,它们在两个方面有所不同:(1)用于确定“有效”转录组miRNA结合位点数量的实验方法,以及(2)miRNA浓度对必须添加以检测靶标的结合位点数量的影响基因抑制(derepression threshold [DRT])。这些研究之间的差异导致就在自然环境中观察ceRNA效应的可能性得出了不同的结论。首次研究得出结论,ceRNA的变化必须达到miRNA的目标丰度,才能对基因调控产生可检测的作用()。此外,由于典型miRNA的靶标丰度很高,因此在生理环境或大多数疾病环境下,分化细胞中ceRNA不太可能对基因表达进行调节(href =“#bib11” rid =“ bib11” class =“ bibr popnode“> Denzler等人,2014 )。此外,研究表明,当miRNA活性降低时,DRT保持恒定。随后的回顾提出了一个数学模型,该模型评估了在不同假定目标丰度下的结合位点占用和竞争(href="#bib22" rid="bib22" class=" bibr popnode"> Jens和Rajewsky,2015 )。这种计算机模拟模型预测,只有结合位点的整体和集体变化才能对靶标丰度产生足够大的影响,以至于可检测地抑制靶基因,这与href =“#bib11” rid =“ bib11”的结果和结论相符。 class =“ bibr popnode”> Denzler等。 (2014)。第二项研究提出了“层次亲和力模型”,其中提出了miRNA丰度,以确定各自对ceRNA介导的调节的敏感性(href =“#bib6” rid =“ bib6” class =“ bibr popnode”> Bosson等人,2014 )。在该模型中,建议是,随着miRNA浓度的增加和Ago-miRNA复合物扩散到越来越弱的位点(从8-nt> 7-nt> 6-nt位点层次推断出亲和力),有效的靶点位点的丰度增长得太大,以至于ceRNA表达的生理范围无法影响抑制。通过这种推理,生理性ceRNA的变化仍然可以通过更适度表达的miRNA来影响阻抑作用,其有效靶位点丰度也相应较低。此外,使用高通量交联来检测靶标会导致靶标丰度估计值降低,从而进一步提高ceRNA调控的合理性(href =“#bib6” rid =“ bib6” class =“ bibr popnode” > Bosson et al。,2014 )。但是,对拟议的miRNA浓度影响的实验支持是相关的,并且缺乏直接的实验证据,例如对miRNA活性的操纵和对DRT改变的测量。href =“#bib11” rid =“ bib11” class =“ bibr popnode “> Denzler等。 (2014)提出,不管miRNA的浓度如何,所有不同亲和力的位点都有助于有效的靶标丰度。这里,我们称为href="#bib11" rid="bib11" class=" bibr popnode"> Denzler等人的模型。 (2014)“混合亲和力模型”,以将其与分层亲和力模型区分开。混合亲和力模型认识到,与低亲和力站点相比,高亲和力站点对有效目标站点丰度的贡献更大(href="#bib11" rid="bib11" class=" bibr popnode"> Denzler等等,2014 )。但是,总的来说,由于亲和力低的位点在转录组中的数量很高,因此即使对于表达水平较低的miRNA,仍然对每个miRNA的有效靶位点丰度做出了重大贡献。其他研究表明,当两个转录本共享不同miRNA种子家族的大量位点时,两个转录本更强更特异性。该假设来自癌症模型中的观察结果,在该模型中,特定癌基因的表达与其假基因相关,并且两个转录本在其3'UTR中都具有高度的序列同源性,并且据报道是通过ceRNA机制相互调节的(< a href =“#bib28” rid =“ bib28” class =“ bibr popnode”>波利塞诺等人,2010 ,href="#bib23" rid="bib23" class=" bibr popnode"> Karreth等人,2015 )。即使包含多个位点的转录物可以发挥独立作用的结合位点的加和效应,每个miRNA家族的位点仍将必须分别达到观察靶基因去抑制所必需的高阈值。因此,单独的多个结合位点的简单存在不足以增加ceRNA效应的可能性,除非这些位点通过协作机制起作用。尽管已经在靶基因抑制的背景下研究了协同作用的影响(href="#bib12" rid="bib12" class=" bibr popnode"> Doench等,2003 ,href =“#bib18” rid =“ bib18” class =“ bibr popnode”>格里姆森等人,2007 ,href="#bib30" rid="bib30" class=" bibr popnode"> Saetrom等人,2007 ,href="#bib7" rid="bib7" class=" bibr popnode"> Broderick等人,2011 ),目前尚不清楚miRNA-结合位点可以非独立的方式隔离miRNA,从而增加ceRNA效应的前景。在这项研究中,我们研究了miRNA水平对DRT的影响,从而解决了层次亲和力和混合亲和力之间的关键差异楷模。然后,我们分析了靶位点互补性对ceRNA介导的基因调控的影响,并研究了紧密间隔的miRNA结合位点可以协同影响靶标基因抑制力的程度。最后,我们建立了一个数学模型,该模型结合了混合亲和力结合和miRNA的抑制活性来概括我们的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号