首页> 美国卫生研究院文献>Elsevier Sponsored Documents >An Endosomal NAADP-Sensitive Two-Pore Ca2+ Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling
【2h】

An Endosomal NAADP-Sensitive Two-Pore Ca2+ Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling

机译:内体NAADP敏感的两孔Ca 2+通道调节ER-内体膜接触位点以控制生长因子信号传导。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionHow organelles communicate is a fundamental question that arises given the compartmentalized nature of eukaryotic cell function. Although vesicular traffic is an established means of information transfer, it is becoming clear that traffic also proceeds by non-vesicular means. In particular, membrane contact sites have emerged as potential platforms for both Ca2+ signaling and lipid transfer (, , , ). Membrane contact sites are regions of close apposition between membranes that are stabilized by tethering complexes. The endoplasmic reticulum (ER) forms multiple classes of contacts with both the plasma membrane and organelles such as endosomes, lysosomes, and mitochondria. Endosome-ER contacts have been implicated in endosome positioning (, ), dephosphorylation of internalized receptors, and components of the endosomal sorting complex required for transport (ESCRT) machinery (, , ), endosome fission (), actin nucleation and retromer-dependent budding (), and cholesterol transport (). We have identified multiple populations of contact sites that form between the ER and different endocytic organelles (), which include those dependent on VAPs (). Notably, contact sites between the ER and EGF receptor-containing endosomes require annexin-A1 and its Ca2+-dependent binding partner S100A11 (), raising the possibility that Ca2+ fluxes may regulate contact.Ca2+ is a widespread signaling ion regulating a range of cellular processes including aspects of vesicle formation, fusion, and traffic (href="#bib2" rid="bib2" class=" bibr popnode">Berridge et al., 2003). Ca2+ signals often invade the cell entirety (global) but they can also be spatially restricted (local), as exemplified by signals generated by the Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP) (href="#bib14" rid="bib14" class=" bibr popnode">Galione, 2015). NAADP is unusual in mediating Ca2+ release from the endo-lysosomal system, an acidic Ca2+ store filled by Ca2+/H+ exchange (href="#bib6" rid="bib6" class=" bibr popnode">Churchill et al., 2002, href="#bib31" rid="bib31" class=" bibr popnode">Patel and Muallem, 2011, href="#bib27" rid="bib27" class=" bibr popnode">Melchionda et al., 2016). It does so by activating two-pore channels (TPCs) (href="#bib5" rid="bib5" class=" bibr popnode">Calcraft et al., 2009, href="#bib3" rid="bib3" class=" bibr popnode">Brailoiu et al., 2009, href="#bib30" rid="bib30" class=" bibr popnode">Patel, 2015). Local NAADP-mediated Ca2+ release events from acidic organelles are amplified by Ca2+ channels on canonical Ca2+ stores of the ER to generate global signals (href="#bib14" rid="bib14" class=" bibr popnode">Galione, 2015). This occurs during signaling by external cues such as hormones and neurotransmitters (href="#bib44" rid="bib44" class=" bibr popnode">Yamasaki et al., 2005, href="#bib29" rid="bib29" class=" bibr popnode">Pandey et al., 2009). However, it is also evident that local TPC-mediated Ca2+ release events function in a constitutive manner. For instance, NAADP/TPC signaling regulates several membrane trafficking events, including retrograde traffic from endosomes to the Golgi (href="#bib39" rid="bib39" class=" bibr popnode">Ruas et al., 2010, href="#bib40" rid="bib40" class=" bibr popnode">Ruas et al., 2014) and the trafficking of cholesterol, receptors, and viruses (href="#bib16" rid="bib16" class=" bibr popnode">Grimm et al., 2014, href="#bib40" rid="bib40" class=" bibr popnode">Ruas et al., 2014, href="#bib41" rid="bib41" class=" bibr popnode">Sakurai et al., 2015). This pathway also regulates endo-lysosomal morphology (href="#bib24" rid="bib24" class=" bibr popnode">Lin-Moshier et al., 2014, href="#bib18" rid="bib18" class=" bibr popnode">Hockey et al., 2015, href="#bib30" rid="bib30" class=" bibr popnode">Patel, 2015), likely through Ca2+-dependent vesicular fusion/fission events (href="#bib33" rid="bib33" class=" bibr popnode">Pryor et al., 2000, href="#bib25" rid="bib25" class=" bibr popnode">Luzio et al., 2007, href="#bib26" rid="bib26" class=" bibr popnode">Marchant and Patel, 2015). However, what role TPCs play in non-vesicular trafficking is unexplored (href="#bib4" rid="bib4" class=" bibr popnode">Burgoyne et al., 2015).Here, we reveal an essential requirement for NAADP and TPC1 in regulating membrane contact site formation between endosomes and the ER to control growth factor signaling.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介鉴于真核细胞功能的分隔性,细胞器如何沟通是一个基本问题。尽管水泡交通是信息传输的既定手段,但很明显,交通也以非水泡方式进行。尤其是,膜接触位点已成为Ca 2 + 信号传导和脂质转移(“”,“”)的潜在平台。膜接触部位是通过束缚复合物稳定的膜之间紧密并置的区域。内质网(ER)与质膜和细胞器(如内体,溶酶体和线粒体)形成多种接触类型。内体-ER接触涉及内体定位(,),内在受体的去磷酸化以及运输(ESCRT)机械(,),内体裂变(),肌动蛋白成核和依赖于复古的芽接所需的内体分选复合物的成分()和胆固醇转运()。我们已经确定了内质网和不同的内吞细胞器之间形成的多个接触位点,其中包括依赖VAP的那些。值得注意的是,含ER和EGF受体的内体之间的接触位点需要膜联蛋白A1及其依赖Ca 2 + 的结合伴侣S100A11(),从而增加了Ca 2 + 通量可能调节接触。Ca 2 + 是一种广泛的信号离子,调节一系列细胞过程,包括囊泡形成,融合和运输(href =“#bib2” rid =“ bib2 “ class =” bibr popnode“> Berridge等,2003 )。 Ca 2 + 信号通常会侵入细胞整体(全局),但是它们也可能在空间上受到限制(局部),例如由Ca 2 + 动员的信号生成的信号就说明了这一点。 ,烟酸腺嘌呤二核苷酸磷酸(NAADP)(href="#bib14" rid="bib14" class=" bibr popnode">加利翁,2015 )。 NAADP在介导Ca 2 + 从内溶酶体系统释放中是不寻常的,溶酶体系统是由Ca 2 + / H填充的酸性Ca 2 + 存储 + 交换(href="#bib6" rid="bib6" class=" bibr popnode"> Churchill等人,2002 ,href =“#bib31” rid =“ bib31” class =“ bibr popnode”> Patel and Muallem,2011 ,href="#bib27" rid="bib27" class=" bibr popnode"> Melchionda等,2016 )。通过激活两孔通道(TPC)(href="#bib5" rid="bib5" class=" bibr popnode"> Calcraft et al。,2009 ,href =“# bib3“ rid =” bib3“ class =” bibr popnode“> Brailoiu等人,2009 ,href="#bib30" rid="bib30" class=" bibr popnode"> Patel,2015年)。 NAADP介导的酸性细胞器中Ca 2 + 的局部释放事件被ER的规范Ca 2 + 存储区中的Ca 2 + 通道放大,从而生成全局信号(href="#bib14" rid="bib14" class=" bibr popnode">加里昂,2015 )。这是在通过外部线索(例如激素和神经递质)发出信号的过程中发生的(href="#bib44" rid="bib44" class=" bibr popnode"> Yamasaki et al。,2005 ,href =“# bib29“ rid =” bib29“ class =” bibr popnode“> Pandey等人,2009 )。但是,也很明显,局部TPC介导的Ca 2 + 释放事件以本构方式起作用。例如,NAADP / TPC信号调节了几种膜运输事件,包括从内体到高尔基体的逆行运输(href="#bib39" rid="bib39" class=" bibr popnode"> Ruas等,2010 ,href="#bib40" rid="bib40" class=" bibr popnode"> Ruas等人,2014 )以及胆固醇,受体和病毒的贩运(href =“ #bib16“ rid =” bib16“ class =” bibr popnode“>格林等人,2014 ,href="#bib40" rid="bib40" class=" bibr popnode">鲁斯等人。 ,2014 ,href="#bib41" rid="bib41" class=" bibr popnode">樱井等人,2015 )。该途径还调节溶酶体的内在形态(href="#bib24" rid="bib24" class=" bibr popnode"> Lin-Moshier等人,2014 ,href =“#bib18” rid =“ bib18” class =“ bibr popnode”>曲棍球等人,2015 ,href="#bib30" rid="bib30" class=" bibr popnode"> Patel,2015 ),可能是通过依赖Ca 2 + 的囊泡融合/裂变事件引起的(href="#bib33" rid="bib33" class=" bibr popnode"> Pryor等,2000 ,href="#bib25" rid="bib25" class=" bibr popnode"> Luzio等人,2007 ,href =“#bib26” rid =“ bib26” class =“ bibr popnode“> Marchant和Patel,2015 )。但是,尚未探究TPC在非水疱性贩运中所起的作用(href="#bib4" rid="bib4" class=" bibr popnode"> Burgoyne等,2015 )。,我们揭示了NAADP和TPC1在调节内体与ER之间的膜接触位点形成以控制生长因子信号传导方面的基本要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号