首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Myosin II Controls Junction Fluctuations to Guide Epithelial Tissue Ordering
【2h】

Myosin II Controls Junction Fluctuations to Guide Epithelial Tissue Ordering

机译:肌球蛋白II控制结点波动指导上皮组织有序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionEpithelia play an important role as selective barriers that separate animal tissues from the external environment. This depends upon the presence of linear adhesive contacts, called adherens junctions (AJs), which bind neighboring cells to one another (, , ). Since epithelia must tolerate changes in cell packing, even during periods of homeostasis, it is important that the loss and gain of AJs occurs without compromising tissue integrity. This requires that AJs be dynamic structures.In a monolayer epithelium, the loss and birth of AJs follows a characteristic trajectory as cells change neighbors. First, an adhesive contact connecting two neighboring epithelial cells is lost, leading to the formation of a four-way vertex. This is then resolved by the birth and elongation of a new AJ interface at ∼90° to the first. This simple process, often called a T1 transition, connects the two cells in a quartet that were previously separate from one another (, , ). Such topological transitions provide epithelial monolayers with the fluidity necessary to preserve tissue integrity in the face of the disruptive influence of epithelial cell division () and cell delamination (); while also allowing packing irregularities and defects in the tissue to be resolved (, ). Moreover, when accompanied by a redistribution of cell mass, directed neighbor exchange events can be used to drive large-scale morphogenetic movements (, ).In many systems, the forces required to drive T1 transitions are generated by the molecular motor, non-muscle Myosin II, as it acts on AJ-associated actin filaments (, ). Through the action of Myosin II, the sliding of anti-parallel filaments, coupled to the AJ, generates localized mechanical tension that causes AJs to shorten, thereby triggering neighbor exchange. This has been especially well studied in the developing Drosophila germband, where polarized junctional actomyosin (), actomyosin flows (href="#bib2" rid="bib2" class=" bibr popnode">Bertet et al., 2004, href="#bib31" rid="bib31" class=" bibr popnode">Rauzi et al., 2010), together with the destabilization of E-cadherin at dorsal-ventral AJs (href="#bib40" rid="bib40" class=" bibr popnode">Tamada et al., 2012) drives tissue elongation (href="#bib3" rid="bib3" class=" bibr popnode">Blankenship et al., 2006, href="#bib21" rid="bib21" class=" bibr popnode">Irvine and Wieschaus, 1994, href="#bib35" rid="bib35" class=" bibr popnode">Simoes Sde et al., 2010). Nevertheless, the impact of actomyosin-based forces on individual AJs and on the tissue as a whole critically depends on the precise localization and polarity of the actomyosin network. Thus, while a pulsed polarized actomyosin network drives neighbor exchange (href="#bib44" rid="bib44" class=" bibr popnode">Zallen and Blankenship, 2008, href="#bib45" rid="bib45" class=" bibr popnode">Zallen and Wieschaus, 2004), medial actomyosin pulses tend to induce apical cell constriction, as seen during ventral furrow invagination (href="#bib25" rid="bib25" class=" bibr popnode">Martin et al., 2009, href="#bib26" rid="bib26" class=" bibr popnode">Mason et al., 2013, href="#bib42" rid="bib42" class=" bibr popnode">Vasquez et al., 2014) and dorsal closure (href="#bib37" rid="bib37" class=" bibr popnode">Solon et al., 2009).Neighbor exchange events have also been suggested to play a much more general role in maintaining the balance between order and disorder in epithelia (href="#bib12" rid="bib12" class=" bibr popnode">Farhadifar et al., 2007, href="#bib24" rid="bib24" class=" bibr popnode">Marinari et al., 2012). However, under conditions of balanced growth or stasis, it is not yet known whether or not actomyosin plays a direct role in the process of neighbor exchange. To address this question, here we utilize the Drosophila pupal notum to explore the regulation and function of junction dynamics in an epithelium during a period in which it remains relatively stable in size and shape (href="#bib4" rid="bib4" class=" bibr popnode">Bosveld et al., 2012, href="#bib17" rid="bib17" class=" bibr popnode">Guirao et al., 2015). Strikingly, in this context, the impact of Myosin-dependent tension on neighbor exchange is different from that described previously. Instead of driving topological rearrangements, junctional actomyosin limits the number of neighbor exchanges in this tissue. This is explained, at least in part, by a computational model, which shows how the variance in actomyosin-based tension across cell-cell junctions over time can determine the impact of junctional actomyosin on tissue topology. Thus, as the levels of junctional Myosin II rise across the tissue over the course of development, the rate of neighbor exchange events declines, aiding the gradual refinement of tissue packing as metamorphosis reaches an end.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介上皮细胞起着重要的作用,将动物组织与外部环境区分开。这取决于线性粘附接触(称为粘附结(AJs))的存在,该接触将相邻的细胞彼此结合(“”,“”)。由于上皮细胞必须耐受细胞堆积的变化,即使在体内平衡期间也是如此,重要的是在不损害组织完整性的情况下发生AJ的丢失和获得。这就要求AJs是动态结构。在单层上皮中,随着细胞改变邻居,AJs的丢失和诞生遵循一条特征轨迹。首先,连接两个相邻上皮细胞的粘合剂接触消失,导致形成四向顶点。然后通过新的AJ界面在与第一个界面约90°处的诞生和伸长来解决。这个简单的过程(通常称为T1过渡)将四重奏中以前彼此分开的两个单元(,,)连接起来。面对上皮细胞分裂()和细胞分层()的破坏性影响,这种拓扑转变为上皮单层提供了维持组织完整性所需的流动性。同时还可以解决堆积不规则和组织中的缺陷(,)。此外,当伴随细胞质量的重新分配时,定向邻居交换事件可用于驱动大规模的形态发生运动(,)。在许多系统中,驱动T1转变所需的力是由分子运动产生的,非肌肉肌球蛋白II,因为它作用于AJ相关肌动蛋白丝(,)。通过肌球蛋白II的作用,与AJ相连的反平行丝的滑动产生局部机械张力,导致AJ缩短,从而触发邻居交换。这在发育中的果蝇种带中进行了很好的研究,在那里极化的连接放线菌素(),放线菌素流动(href="#bib2" rid="bib2" class=" bibr popnode"> Bertet等,2004 ,href="#bib31" rid="bib31" class=" bibr popnode"> Rauzi等人,2010 ),以及背腹AJ处的E-钙粘蛋白不稳定(< a href =“#bib40” rid =“ bib40” class =“ bibr popnode”> Tamada等人,2012 )驱动组织伸长(href =“#bib3” rid =“ bib3” class =“ bibr popnode“> Blankenship et al。,2006 ,href="#bib21" rid="bib21" class=" bibr popnode"> Irvine and Wieschaus,1994 ,href =” #bib35“ rid =” bib35“ class =” bibr popnode“> Simoes Sde等人,2010 )。然而,基于肌动球蛋白的力对单个AJ以及整个组织的影响关键取决于肌动球蛋白网络的精确定位和极性。因此,虽然脉冲极化的放线菌素网络驱动邻居交换(href="#bib44" rid="bib44" class=" bibr popnode"> Zallen and Blankenship,2008 ,href =“#bib45” rid =“ bib45” class =“ bibr popnode”> Zallen和Wieschaus,2004 ),内侧肌动球蛋白脉冲趋向于诱导根尖细胞收缩,如在腹沟内陷过程中所见(href =“#bib25” rid = “ bib25” class =“ bibr popnode”>马丁等人,2009 ,href="#bib26" rid="bib26" class=" bibr popnode">梅森等人,2013 ,href="#bib42" rid="bib42" class=" bibr popnode"> Vasquez等人,2014 )和背侧闭合(href =“#bib37” rid =“ bib37” (Solon et al。,2009 )。邻居交换事件也被认为在维持上皮细胞有序和无序之间的平衡方面起着更为普遍的作用(href =“# bib12“ rid =” bib12“ class =” bibr popnode“> Farhadifar等人,2007 ,href="#bib24" rid="bib24" class=" bibr popnode"> Marinari等人, 2012 )。然而,在平衡生长或停滞的条件下,尚不知道放线菌素是否在邻居交换过程中起直接作用。为了解决这个问题,在这里我们利用果蝇p来探究上皮细胞在其大小和形状保持相对稳定的时期内上皮连接动力学的调节和功能(href =“#bib4” rid =“ bib4 “ class =” bibr popnode“> Bosveld等,2012 ,href="#bib17" rid="bib17" class=" bibr popnode"> Guirao等,2015 ) 。引人注目的是,在这种情况下,依赖肌球蛋白的张力对邻居交换的影响与先前描述的不同。代替驱动拓扑重排,连接肌动球蛋白限制了该组织中邻居交换的数量。这至少部分地由计算模型来解释。,该图显示了跨细胞-细胞连接的基于肌动球蛋白的张力随时间的变化如何确定连接肌动球蛋白对组织拓扑结构的影响。因此,随着在整个发育过程中整个组织中连接肌球蛋白II的水平升高,邻居交换事件的速率下降,从而在变态结束时帮助组织堆积的逐渐细化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号