首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Short-Term Intermittent Fasting Induces Long-Lasting Gut Health and TOR-Independent Lifespan Extension
【2h】

Short-Term Intermittent Fasting Induces Long-Lasting Gut Health and TOR-Independent Lifespan Extension

机译:短期间歇性禁食可导致持久肠道健康和不依赖于TOR的寿命

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionIntermittent fasting (IF), an umbrella term for diets that cycle between a period of fasting and non-fasting, has become increasingly popular as a weight loss regime (e.g., “every-other-day fasting” and the “5:2” diet) [, ]. Advocates of IF argue that it shows many of the benefits seen with traditional daily energy restriction diets but with a simplified nutritional regime and increased compliance []. One study on the clinical outcomes of fasting in young overweight women described significant weight loss as a result of the IF regime, as well as reduced fat mass and waist circumference, and lowered serum cholesterol, triglycerides, and C-reactive protein []. More recent, pilot, clinical trials used a fasting mimicking diet (FMD) (consisting of monthly cycles of a 5-day fast during which daily food intake was reduced to ∼50% normal caloric intake), which reduced multiple health risk factors during the post-fast recovery period, including lowered blood pressure, and reduced blood glucose and insulin-like growth factor-1 (IGF-1) levels [, ]. However, systematic reviews of the clinical benefits of fasting regimens in humans found that study designs were heterogeneous and compliance data limited, making it difficult to draw definitive conclusions [, ].IF can extend lifespan in a variety of organisms, including bacteria, yeast, nematode worms, and mice []. In animal models, IF has been shown to reduce the risk of developing a variety of age-related pathologies [, ]. IF is effective in preventing neurodegeneration in rodents [, , , , href="#bib15" rid="bib15" class=" bibr popnode">15] and can attenuate cancer [href="#bib16" rid="bib16" class=" bibr popnode">16] and cardiometabolic diseases, such as type II diabetes [href="#bib4" rid="bib4" class=" bibr popnode">4, href="#bib17" rid="bib17" class=" bibr popnode">17, href="#bib18" rid="bib18" class=" bibr popnode">18, href="#bib19" rid="bib19" class=" bibr popnode">19, href="#bib20" rid="bib20" class=" bibr popnode">20, href="#bib21" rid="bib21" class=" bibr popnode">21]. FMD was recently found to increase pancreatic β cell regeneration in mouse models of diabetes [href="#bib22" rid="bib22" class=" bibr popnode">22].DR, a chronic reduction of food intake without malnutrition, is an evolutionarily conserved method of improving health during aging and extending lifespan [href="#bib23" rid="bib23" class=" bibr popnode">23]. However, many studies of DR, particularly in rodents, also involve intermittent access to food, with the DR animals gorging their reduced meal as soon as it is supplied, leaving extended periods of time in a fasted state [href="#bib24" rid="bib24" class=" bibr popnode">24]. The beneficial health effects seen in DR may therefore be attributable, at least in part, to intermittent starvation. Supporting this idea, performing DR without the extended fasting periods by diluting the food of the DR mice with non-digestible cellulose, thus restricting total energy intake but allowing constant access to food, did not extend lifespan compared to fully fed animals [href="#bib25" rid="bib25" class=" bibr popnode">25]. In contrast, many studies in invertebrate organisms, including yeast, worms, and Drosophila, where the DR treatment involves continuous access to diluted food, result in robust lifespan extension [href="#bib26" rid="bib26" class=" bibr popnode">26]. Therefore, periodic fasting may be important for, but is likely not the only contributor to, the pro-longevity effects of DR, at least in these invertebrates.Reduced activity of nutrient-sensing pathways, with corresponding decrease in global protein translation, is implicated as an important mechanism underlying the pro-longevity effects of dietary interventions, such as DR [href="#bib23" rid="bib23" class=" bibr popnode">23]. Reduced TOR signaling is a hallmark of pro-longevity interventions, including DR, and treatment with the TOR inhibitor rapamycin extends healthy lifespan in a range of organisms [href="#bib27" rid="bib27" class=" bibr popnode">27]. Although DR may exert some of its pro-longevity effects through reduced fecundity, DR can still extend lifespan in sterile, ovoD mutant Drosophila, implying that fecundity and lifespan can be uncoupled and that other mechanisms are also important [href="#bib28" rid="bib28" class=" bibr popnode">28]. A recent study highlighted the importance of gut homeostasis in DR-induced longevity in Drosophila, because DR both rescued age-related gut pathologies and extended lifespan in females and in males with feminized guts, but not in wild-type males, which do not undergo significant age-related gut pathology [href="#bib29" rid="bib29" class=" bibr popnode">29]. Diet composition and fly food transfer schedule are also known to affect the abundance and diversity of fly-associated bacteria [href="#bib30" rid="bib30" class=" bibr popnode">30], and periods of fasting may be expected to modulate the associated microbiota.Invertebrate model organisms provide powerful contexts in which to establish the molecular mechanisms mediating the pro-longevity effects of IF. In yeast, Rim15, a key integrator of signals transduced by the Sch9, Ras, and TOR pathways, is important for starvation-induced lifespan extension [href="#bib31" rid="bib31" class=" bibr popnode">31] while in the nematode worm Rheb-1, with a key role in TOR signaling, is essential for the pro-longevity effects of IF [href="#bib32" rid="bib32" class=" bibr popnode">32]. Interestingly, the findings with both organisms imply the existence of additional underlying mechanisms mediating the pro-longevity effects of IF. It is unclear whether Rim15/Rheb-1 and their interactors mediate the effects of IF in mammals.Previous studies examining potential pro-longevity effects of IF in flies have produced mainly negative results [href="#bib26" rid="bib26" class=" bibr popnode">26, href="#bib33" rid="bib33" class=" bibr popnode">33, href="#bib34" rid="bib34" class=" bibr popnode">34]. The first studies, almost 90 years ago, found that 6 hr of starvation in every 24 hr was beneficial and could extend lifespan [href="#bib34" rid="bib34" class=" bibr popnode">34]. However, the effects of this IF regime may be strain or food medium specific, because a similar, more rigorous experiment ∼80 years later found that daily bouts of either 3 hr or 6 hr starvation throughout the adult life of the fly had neither a positive nor a negative effect on lifespan [href="#bib26" rid="bib26" class=" bibr popnode">26]. Interestingly, short-term fasting can increase resistance to severe cold stress [href="#bib35" rid="bib35" class=" bibr popnode">35] and facilitate long-term memory formation in flies [href="#bib36" rid="bib36" class=" bibr popnode">36]. Time-restricted feeding (TRF) in Drosophila improves sleep consolidation as well as a variety of cardiac output functions that normally decline with age, despite the caloric ingestion/expenditure of TRF flies being the same as ad-libitum-fed flies [href="#bib37" rid="bib37" class=" bibr popnode">37]. Thus, health improvements can result from various IF regimes in Drosophila, but the mechanisms at work await elucidation and the evidence for a pro-longevity phenotype from IF is more mixed.Here, we investigated a variety of IF regimes in flies and their effects on a range of health outcomes, including feeding behavior, gut and metabolic health, survival after stress, and lifespan. Importantly, short-term IF (the “2:5” diet) confined to early life robustly increased subsequent lifespan, particularly in females, independent of TOR signaling. Short-term IF also led to long-lasting health improvements, including increased stress resistance and a lower incidence of gut pathology that was associated with reduced bacterial abundance.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介间歇性禁食(IF),是一种在禁食期之间循环饮食的总称禁食和非禁食已成为减肥方法(例如,“每天禁食”和“ 5:2”饮食)变得越来越流行[,]。 IF的拥护者认为,它显示了传统的每日能量限制饮食所具有的许多好处,但具有简化的营养体系和增加的依从性[]。一项针对年轻超重女性禁食的临床结果的研究表明,IF疗法可显着减轻体重,并减少脂肪量和腰围,并降低血清胆固醇,甘油三酸酯和C反应蛋白[]。最近的一项试验性临床试验使用了禁食模拟饮食(FMD)(由5天禁食的每月周期组成,在此期间每日食物摄入量减少至正常卡路里摄入量的50%左右),从而降低了饮食期间的多种健康风险因素快速恢复期后,包括降低血压,降低血糖和胰岛素样生长因子-1(IGF-1)水平[,]。然而,对禁食对人类临床益处的系统评价发现,研究设计异质且依从性数据有限,因此很难得出明确的结论[,]。IF可以延长包括细菌,酵母菌在内的多种生物的寿命,线虫和小鼠[线虫]。在动物模型中,IF已被证明可以降低发生多种与年龄有关的病理的风险[,]。 IF可有效防止啮齿动物[,,,,href="#bib15" rid="bib15" class=" bibr popnode"> 15 ]的神经退行性变,并能减轻癌症[href =“# bib16“ rid =” bib16“ class =” bibr popnode“> 16 ]和心脏代谢疾病,例如II型糖尿病[href="#bib4" rid="bib4" class=" bibr popnode"> 4 ,href="#bib17" rid="bib17" class=" bibr popnode"> 17 ,href =“#bib18” rid =“ bib18” class =“ bibr popnode “> 18 ,href="#bib19" rid="bib19" class=" bibr popnode"> 19 ,href =”#bib20“ rid =” bib20“ class =” bibr popnode“> 20 ,href="#bib21" rid="bib21" class=" bibr popnode"> 21 ]。最近发现,FMD可增加糖尿病小鼠模型中胰腺β细胞的再生[href="#bib22" rid="bib22" class=" bibr popnode"> 22 ] .DR,一种慢性减少食物摄入没有营养不良的食物是一种进化上保守的方法,可以改善衰老过程中的健康状况并延长其寿命[href="#bib23" rid="bib23" class=" bibr popnode"> 23 ]。但是,许多关于DR的研究(尤其是在啮齿动物中)也涉及间歇性地获取食物,DR动物在提供食物后便立即减少进食,从而在禁食状态下延长时间[href =“#bib24 “ rid =” bib24“ class =” bibr popnode“> 24 ]。因此,在DR中看到的有益健康影响可能至少部分归因于间歇性饥饿。支持这一想法的是,通过用不易消化的纤维素稀释DR小鼠的食物,从而在没有延长的禁食期的情况下进行DR,从而限制了总能量摄入,但允许持续获取食物,与完全喂养的动物相比没有延长寿命[href =“#bib25” rid =“ bib25” class =“ bibr popnode”> 25 ]。相比之下,许多对无脊椎动物的研究,包括酵母,蠕虫和果蝇,DR处理都需要持续获取稀释的食物,从而延长了使用寿命[[aa href =“#bib26” rid =“ bib26” class =“ bibr popnode“> 26 ]。因此,至少在这些无脊椎动物中,定期禁食可能对DR的延寿作用很重要,但可能不是唯一的因素。作为延长饮食干预效果的重要机制,例如DR [href="#bib23" rid="bib23" class=" bibr popnode"> 23 ]。减少的TOR信号传导是包括DR在内的延长寿命的干预措施的标志,使用TOR抑制剂雷帕霉素进行治疗可延长多种生物的健康寿命[href =“#bib27” rid =“ bib27” class =“ bibr popnode” > 27 ]。尽管DR可能通过降低生殖力而发挥某些延长寿命的作用,但DR仍可以延长无菌ovo D 果蝇的寿命,这暗示着生殖力和寿命可以分离,其他机制也很重要[href="#bib28" rid="bib28" class=" bibr popnode"> 28 ]。最近的一项研究强调了肠道动态平衡在果蝇DR诱导的寿命中的重要性,因为DR可以挽救与女性相关的肠道病理,并延长女性和女性肠道中男性的寿命,但未在未经历明显的与年龄相关的肠道病理[href="#bib29" rid="bib29" class=" bibr popnode"> 29 ]的野生型雄性中发生。还已知饮食组成和飞行食物的转移时间表会影响与飞行相关的细菌[href="#bib30" rid="bib30" class=" bibr popnode"> 30 ]的数量和多样性,并且可以预期禁食期将调节相关的微生物群。无脊椎动物模型生物提供了强大的环境,可在其中建立介导IF延长寿命效应的分子机制。在酵母中,Rim15是Sch9,Ras和TOR途径转导的信号的关键整合子,对饥饿诱导的寿命延长很重要[href="#bib31" rid="bib31" class=" bibr popnode"> 31 ]在线虫蠕虫Rheb-1中(在TOR信号中起关键作用)对于IF [href =“#bib32” rid =“ bib32” class =“ bibr popnode“> 32 ]。有趣的是,两种生物的发现暗示存在介导IF延长寿命效应的其他潜在机制。尚不清楚Rim15 / Rheb-1及其相互作用物是否介导IF在哺乳动物中的作用。先前研究了IF在果蝇中可能延长寿命的作用主要产生了阴性结果[href =“#bib26” rid =“ bib26 “ class =” bibr popnode“> 26 ,href="#bib33" rid="bib33" class=" bibr popnode"> 33 ,href =”#bib34“ rid = “ bib34” class =“ bibr popnode”> 34 ]。大约90年前的第一项研究发现,每24小时饥饿6小时是有益的,并且可以延长寿命[href="#bib34" rid="bib34" class=" bibr popnode"> 34 ]。但是,这种中频制度的影响可能是菌株或食物特定的,因为大约80年后进行了类似的更严格的实验,发现果蝇成年后每天饥饿3个小时或6个小时都没有阳性反应也不会对寿命产生负面影响[href="#bib26" rid="bib26" class=" bibr popnode"> 26 ]。有趣的是,短期禁食可以增强对严寒压力的抵抗力,并促进苍蝇的长期记忆形成[[aa =“ =” bib35“ rid =” bib35“ class =” bibr popnode“> 35 ] [ href="#bib36" rid="bib36" class=" bibr popnode"> 36 ]。果蝇的限时进食(TRF)改善了睡眠巩固能力,并且各种心排血功能通常随着年龄的增长而下降,尽管TRF苍蝇的热量摄入/摄入量与随意喂养的苍蝇相同。[href =“#bib37” rid =“ bib37” class =“ bibr popnode”> 37 ]。因此,果蝇的多种IF方案可以改善健康状况,但是尚需阐明其工作机制,而且IF延长寿命表型的证据还很混杂。在这里,我们研究了果蝇中多种IF方案及其对果蝇的影响一系列健康结果,包括进食行为,肠道和代谢健康,压力后的存活率和寿命。重要的是,仅限于早年的短期中频饮食(“ 2:5”饮食)可显着延长其后寿命,特别是在女性中,而不受TOR信号的影响。短期中频还可以带来长期的健康改善,包括增加的抗逆性和与细菌丰富度降低相关的肠道病理发生率降低。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号