首页> 美国卫生研究院文献>Elsevier Sponsored Documents >UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis
【2h】

UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis

机译:UCHL3通过控制TDP1蛋白质稳态调节拓扑异构酶诱导的染色体断裂修复。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionOptimal protein homeostasis (proteostasis) is essential for all aspects of cellular activities. It is controlled by a number of competing, but integrated, pathways including biogenesis, trafficking, and degradation (, ). Adjusting these processes to the demand of individual proteins and pathways is essential to maintain cellular function. Perturbation in proteostasis causes human disease. For example, failure to degrade and subsequently clear proteins that are covalently linked to DNA cause human neurological disease and premature aging (, , , , ). The linkage of proteins to DNA could be non-enzymatically driven by the vicinity of proteins to DNA in the presence of endogenous crosslinking agents, such as aldehydes. Formaldehyde is a potent crosslinking agent generated as a metabolic by-product during de-methylation of histones and DNA (, ). It could also be driven enzymatically, as part of physiological cycles of many DNA metabolising enzymes, such as topoisomerases, DNA glycosylases, and methyltransferases (). This linkage is generally transient and reversible, but it can become irreversible under certain physiological and pathological circumstances, causing deleterious protein-liked DNA breaks (PDBs). The most famous example of PDBs is those mediated by DNA topoisomerases (, , ).Topoisomerases are elegant biological tools that overcome topological entanglements inherent to the intertwined and compact nature of DNA. Their function is important for many aspects of DNA metabolism, such as gene transcription, DNA replication, recombination, and repair (). Topoisomerases achieve this by transiently cleaving one or two strands of the DNA, thereby allowing the swiveling or rotation of the other strand or duplex around the break. Topoisomerase I (TOP1) generates intermediates in which the TOP1 is linked to the 3′ terminus of a single-strand break (SSB), whereas TOP2 intermediates are linked to the 5′ termini of a DNA double-strand break (DSB). Accumulation of TOP1- or TOP2-mediated PDBs cause neurological disease in humans (, href="#bib1" rid="bib1" class=" bibr popnode">Alagoz et al., 2013, href="#bib20" rid="bib20" class=" bibr popnode">El-Khamisy et al., 2005, href="#bib25" rid="bib25" class=" bibr popnode">Gómez-Herreros et al., 2014, href="#bib65" rid="bib65" class=" bibr popnode">Walker and El-Khamisy, 2018) and has been widely exploited in cancer chemotherapy (href="#bib2" rid="bib2" class=" bibr popnode">Alagoz et al., 2014, href="#bib5" rid="bib5" class=" bibr popnode">Ashour et al., 2015, href="#bib15" rid="bib15" class=" bibr popnode">Das et al., 2014, href="#bib46" rid="bib46" class=" bibr popnode">Meisenberg et al., 2017, href="#bib52" rid="bib52" class=" bibr popnode">Rehman et al., 2018). Accumulation of PDBs is counteracted by a number of PDB repair activities that constantly monitor and precisely disjoin the stalled topoisomerase from DNA termini or nucleolytically cut the DNA to release the stalled topoisomerase and a fragment of DNA. The former mode of repair spares the loss of genetic information and is conducted by a class of enzymes that specifically cleave the covalent linkage between the stalled topoisomerase and DNA called “tyrosyl DNA phosphodiesterases” (TDPs). TDP1 primarily disjoins stalled TOP1 peptides from PDBs, whereas TDP2 exhibits greater preference toward TOP2-mediated PDBs (href="#bib20" rid="bib20" class=" bibr popnode">El-Khamisy et al., 2005, href="#bib12" rid="bib12" class=" bibr popnode">Cortes Ledesma et al., 2009, href="#bib56" rid="bib56" class=" bibr popnode">Schellenberg et al., 2017). Defects in either TDP1 or TDP2 cause accumulation of PDBs and interfere with transcription, leading to neuronal cell death (href="#bib25" rid="bib25" class=" bibr popnode">Gómez-Herreros et al., 2014, href="#bib26" rid="bib26" class=" bibr popnode">Hudson et al., 2012, href="#bib33" rid="bib33" class=" bibr popnode">Katyal et al., 2007). In contrast, their overexpression has been linked to the resistance of cancer cells to topoisomerase targeting therapies (href="#bib7" rid="bib7" class=" bibr popnode">Barthelmes et al., 2004, href="#bib16" rid="bib16" class=" bibr popnode">Do et al., 2012, href="#bib18" rid="bib18" class=" bibr popnode">Duffy et al., 2016, href="#bib39" rid="bib39" class=" bibr popnode">Liu et al., 2007, href="#bib45" rid="bib45" class=" bibr popnode">Meisenberg et al., 2014). Despite their roles in many aspects of cellular activities and their implication in multiple clinical settings, the mechanisms that maintain TDPs proteostasis are not known.TDP1 proteostasis is particularly attractive since a specific mutation in its active site that substitutes histidine 493 to arginine perturbs the completion of its catalytic cycle and additionally produces a TDP1-mediated PDB (href="#bib13" rid="bib13" class=" bibr popnode">Cuya et al., 2016, href="#bib28" rid="bib28" class=" bibr popnode">Interthal et al., 2005). Bi-allelic TDP1H493R mutation is associated with ∼70% reduction of TDP1 protein level and leads to the accumulation of both TOP1- and TDP1-mediated PDBs, causing neurodegeration in spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). Cells derived from SCAN1 patients exhibit marked sensitivity to TOP1 poisons, such as camptothecin and irinotecan (href="#bib20" rid="bib20" class=" bibr popnode">El-Khamisy et al., 2005, href="#bib28" rid="bib28" class=" bibr popnode">Interthal et al., 2005, href="#bib48" rid="bib48" class=" bibr popnode">Miao et al., 2006, href="#bib71" rid="bib71" class=" bibr popnode">Zhou et al., 2005). Although much is known about TDP1 biology, little is known about the mechanisms that control its steady-state level and why levels are markedly reduced in SCAN1 remains unexplained.Post-translational modifications have been shown to control the steady-state level and modulate the function of several DNA repair factors (href="#bib21" rid="bib21" class=" bibr popnode">Elserafy and El-Khamisy, 2018, href="#bib44" rid="bib44" class=" bibr popnode">Meisenberg et al., 2012, href="#bib49" rid="bib49" class=" bibr popnode">Parsons et al., 2008). Protein ubiquitylation plays an important role in controlling the half-life of proteins via the ubiquitin-proteasome system (href="#bib3" rid="bib3" class=" bibr popnode">Amm et al., 2014). It offers a reversible mode of control for a myriad of cellular processes such as protein sorting, signal transduction and DNA repair (href="#bib10" rid="bib10" class=" bibr popnode">Chen and Chen, 2013, href="#bib22" rid="bib22" class=" bibr popnode">Francisco et al., 2014, href="#bib44" rid="bib44" class=" bibr popnode">Meisenberg et al., 2012, href="#bib49" rid="bib49" class=" bibr popnode">Parsons et al., 2008, href="#bib50" rid="bib50" class=" bibr popnode">Parsons et al., 2009, href="#bib63" rid="bib63" class=" bibr popnode">van Cuijk et al., 2014). The transient nature and fine tuning of ubiquitylation is achieved by an intricate balance of two opposing activities: the ubiquitin-conjugating cascade, which is a complex set of enzymes that conjugate ubiquitin to proteins, and deubiquitylase enzymes (DUBs), which remove ubiquitin molecules from the modified proteins (href="#bib38" rid="bib38" class=" bibr popnode">Komander et al., 2009, href="#bib47" rid="bib47" class=" bibr popnode">Metzger et al., 2014). Here, we report that TDP1 levels are regulated by ubiquitylation and identify UCHL3 as the deubiquitylase enzyme controlling TDP1 proteostasis. A low level of UCHL3 is associated with reduced TDP1 protein levels, causing neurological disease, whereas its overexpression causes higher TDP1 levels in cancer.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介最佳的蛋白质稳态(蛋白稳态)对于细胞活动的各个方面都是必不可少的。它受包括生物发生,运输和降解(,)在内的许多竞争性但整合的途径控制。根据个体蛋白质和途径的需求调整这些过程对于维持细胞功能至关重要。蛋白质稳态的摄动引起人类疾病。例如,无法降解并随后清除与DNA共价连接的蛋白质会导致人类神经系统疾病和过早衰老(“”,“”,“”)。在存在内源性交联剂(例如醛)的情况下,蛋白质与DNA的邻近关系可能会非酶促地驱动蛋白质与DNA的连接。甲醛是一种有效的交联剂,在组蛋白和DNA脱甲基化过程中作为代谢副产物产生。作为许多DNA代谢酶(例如拓扑异构酶,DNA糖基化酶和甲基转移酶)的生理周期的一部分,它也可以通过酶促驱动。这种连接通常是瞬时的和可逆的,但在某些生理和病理情况下可能变得不可逆,从而导致类似蛋白质的有害DNA断裂(PDB)。 PDB最著名的例子是由DNA拓扑异构酶(``,'')介导的那些。拓扑异构酶是一种优雅的生物学工具,可以克服DNA交织和紧密的本质所固有的拓扑纠缠。它们的功能对于DNA代谢的许多方面都很重要,例如基因转录,DNA复制,重组和修复()。拓扑异构酶通过瞬时切割DNA的一条或两条链来实现此目的,从而允许另一条链或双链体围绕断裂旋转或旋转。拓扑异构酶I(TOP1)生成的中间体中,TOP1与单链断裂(SSB)的3'末端相连,而TOP2中间体与DNA双链断裂(DSB)的5'末端相连。 TOP1或TOP2介导的PDB的积累会引起人类神经系统疾病(,href="#bib1" rid="bib1" class=" bibr popnode"> Alagoz等,2013 ,href =“#bib20” rid =“ bib20” class =“ bibr popnode”> El-Khamisy等人,2005 ,href="#bib25" rid="bib25" class=" bibr popnode"> Gómez-Herreros等人,2014 ,href="#bib65" rid="bib65" class=" bibr popnode"> Walker and El-Khamisy,2018 ),并已被广泛利用在癌症化疗中(href="#bib2" rid="bib2" class=" bibr popnode"> Alagoz et al。,2014 ,href =“#bib5” rid =“ bib5” class = “ bibr popnode”> Ashour等,2015 ,href="#bib15" rid="bib15" class=" bibr popnode"> Das等,2014 ,href =“#bib46” rid =“ bib46” class =“ bibr popnode”>迈森伯格等人,2017 ,href="#bib52" rid="bib52" class=" bibr popnode">雷曼等人等,2018年)。 PDB的积累被许多PDB修复活动所抵消,这些活动不断监测停顿的拓扑异构酶并将其与DNA末端精确分开,或通过核酸切割将DNA释放以释放停滞的拓扑异构酶和DNA片段。前一种修复方式避免了遗传信息的丢失,并且由一类酶进行,这些酶特异性地裂解了停滞的拓扑异构酶与被称为“酪氨酰DNA磷酸二酯酶”(TDP)的DNA之间的共价键。 TDP1主要从PDB中解离停滞的TOP1肽,而TDP2对TOP2介导的PDB表现出更大的偏好(href="#bib20" rid="bib20" class=" bibr popnode"> El-Khamisy等,2005 ,href="#bib12" rid="bib12" class=" bibr popnode">科尔特斯·莱德斯玛(Cortes Ledesma)等,2009 ,href =“#bib56” rid =“ bib56” class = “ bibr popnode“> Schellenberg等人,2017 )。 TDP1或TDP2中的缺陷会导致PDB积累并干扰转录,从而导致神经元细胞死亡(href="#bib25" rid="bib25" class=" bibr popnode">Gómez-Herreros等,2014 < / a>,href="#bib26" rid="bib26" class=" bibr popnode">哈德森等人,2012 ,href =“#bib33” rid =“ bib33” class = “ bibr popnode“> Katyal等人,2007 )。相反,它们的过表达与癌细胞对拓扑异构酶靶向疗法的耐药性有关(href="#bib7" rid="bib7" class=" bibr popnode"> Barthelmes et al。,2004 , href="#bib16" rid="bib16" class=" bibr popnode">等,2012 ,href =“#bib18” rid =“ bib18” class =“ bibr popnode” >达菲(Duffy)等人,2016 ,href="#bib39" rid="bib39" class=" bibr popnode">刘等人,2007 ,href =“#bib45 “ rid =” bib45“ class =” bibr popnode“> Meisenberg等。,2014 )。尽管它们在细胞活动的许多方面都起作用,并且在多种临床环境中具有影响,但尚不知道维持TDPs蛋白质稳态的机制。TDP1蛋白质稳态特别引人注目,因为其活性位点上的特定突变可将组氨酸493取代为精氨酸,从而干扰了TDPs的完成。其催化循环,并另外产生TDP1介导的PDB(href="#bib13" rid="bib13" class=" bibr popnode"> Cuya等人,2016 ,href =“#bib28 “ rid =” bib28“ class =” bibr popnode“> Interthal等人,2005 )。双等位基因TDP1 H493R 突变与TDP1蛋白水平降低约70%相关,并导致TOP1和TDP1介导的PDB积累,从而导致脊髓小脑共济失调伴轴突神经病1(SCAN1)的神经退化。 )。源自SCAN1患者的细胞对喜树碱和伊立替康等TOP1毒性表现出明显的敏感性(href="#bib20" rid="bib20" class=" bibr popnode"> El-Khamisy et al。,2005 ,href="#bib28" rid="bib28" class=" bibr popnode"> Interthal等人,2005 ,href =“#bib48” rid =“ bib48” class =“ bibr popnode “> Miao等,2006 ,href="#bib71" rid="bib71" class=" bibr popnode"> Zhou等,2005 )。尽管人们对TDP1生物学知之甚少,但对于控制其稳态水平的机制以及为何SCAN1中的水平显着降低的原因知之甚少。翻译后修饰已显示出可控制稳态水平并调节功能的原因。几种DNA修复因子(href="#bib21" rid="bib21" class=" bibr popnode"> Elserafy and El-Khamisy,2018 ,href =“#bib44” rid =“ bib44 “ class =” bibr popnode“> Meisenberg等人,2012 ,href="#bib49" rid="bib49" class=" bibr popnode"> Parsons等人,2008 ) 。蛋白质泛素化在通过泛素-蛋白酶体系统控制蛋白质半衰期中起着重要作用(href="#bib3" rid="bib3" class=" bibr popnode"> Amm et al。,2014 )。它为无数的细胞过程提供了可逆的控制模式,例如蛋白质分选,信号转导和DNA修复(href="#bib10" rid="bib10" class=" bibr popnode"> Chen and Chen,2013 < / a>,href="#bib22" rid="bib22" class=" bibr popnode">弗朗西斯科等人,2014 ,href =“#bib44” rid =“ bib44” class = “ bibr popnode”> Meisenberg等,2012 ,href="#bib49" rid="bib49" class=" bibr popnode"> Parsons等,2008 ,href =“#bib50” rid =“ bib50” class =“ bibr popnode”> Parsons等人,2009 ,href="#bib63" rid="bib63" class=" bibr popnode">范奎克等,2014 )。两种相对活性的复杂平衡实现了泛素化的瞬时性质和微调:泛素结合级联反应是将泛素结合到蛋白质上的一组复杂的酶,而脱泛素化酶(DUBs)则从中去除泛素分子修饰的蛋白质(href="#bib38" rid="bib38" class=" bibr popnode"> Komander等,2009 ,href =“#bib47” rid =“ bib47” class = “ bibr popnode”> Metzger等人,2014 )。在这里,我们报告说,TDP1水平受泛素化调节,并确定UCHL3为控制TDP1蛋白质稳态的去泛素化酶。 UCHL3水平低与TDP1蛋白水平降低相关,从而引起神经系统疾病,而UCHL3的过表达导致癌症中TDP1水平升高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号