class='head no_bottom_margin' id='sec1title'>Int'/> Identification Characterization and Heritability of Murine Metastable Epialleles: Implications for Non-genetic Inheritance
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Identification Characterization and Heritability of Murine Metastable Epialleles: Implications for Non-genetic Inheritance
【2h】

Identification Characterization and Heritability of Murine Metastable Epialleles: Implications for Non-genetic Inheritance

机译:鉴定表征和遗传性的小鼠亚稳态Epialleles:对非遗传遗传的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMost interindividual phenotypic variation is explained by genetic variation. However, studies in plant and animal models indicate that non-genetic mechanisms can contribute to phenotypic variability, and such phenotypes can be inherited over multiple generations (, , ). Epigenetic changes in the absence of genetic effects have been reported to have long-lasting phenotypic outcomes over multiple generations in non-mammalian organisms. In mammals, such non-genetic effects are difficult to explain mechanistically, and it has been challenging to define the regulatory processes underlying the observed phenomena ().Two of the best-characterized paradigms of non-genetic inheritance in mammals occur at the murine Agouti viable yellow (Avy) and Axin Fused (AxinFu) loci (, ). In these naturally occurring mutant mice, genetically identical individuals exhibit quantifiable phenotypic variability in coat color or tail morphology due to the insertion of an endogenous retrovirus (ERV) of the intracisternal A particle (IAP) class into the Agouti or the Fused loci, respectively. The range of phenotypes correlates reproducibly with interindividual differences in the level of DNA methylation at a long terminal repeat (LTR) promoter of the IAP, driving abnormal expression of the genes (, ). The consistency in methylation level observed within an individual is in contrast to the variation of methylation levels and phenotypic outcomes observed between individuals, defining Avy and AxinFu as so-called “metastable epialleles” (). Transgenerational inheritance of the methylation pattern at these metastable epialleles has been observed, whereby the distribution of phenotypes in the offspring was shown to be dependent on parental phenotype (, ). Furthermore, Avy is susceptible to environmental influence impacting methylation and phenotype (, , , ). Using genetic screens, proteins with epigenetic function associated with the maintenance of Avy have been identified (href="#bib9" rid="bib9" class=" bibr popnode">Daxinger et al., 2013). In another study, a C57BL/6J endogenous IAP insertion at Cdk5rap1 regulates transcriptional dosage via promoter methylation; however, an association with phenotype has not been reported (href="#bib14" rid="bib14" class=" bibr popnode">Druker et al., 2004). Together, these studies suggest that ERVs of the IAP subclass have the potential to be variably methylated, here referred to as variably methylated IAPs (VM-IAPs).The properties and underlying mechanisms governing the establishment, behavior, and inheritance of VM-IAPs remain elusive, as does the extent to which they represent a genome-wide phenomenon. 45% of the murine genome is made up of repetitive sequences, with ERVs comprising about 12% of the genome. In the C57BL/6J genome, there are approximately 12,000 ERVs of the IAP subclass (href="#bib49" rid="bib49" class=" bibr popnode">Smit et al., 2015). The degree to which this substantial fraction of the repeat genome might modulate phenotype is unclear, and the total number of naturally existing murine VM-IAPs is unknown to date.Previous studies have searched for metastable epialleles with limited success. Strategies have included surveying expression microarray data for within-strain interindividual expression patterns, screening for retrotransposons that neighbor promoters marked by the active histone modification H3K4me3, and conducting a phylogenetic analysis on IAP elements (href="#bib57" rid="bib57" class=" bibr popnode">Weinhouse et al., 2011, href="#bib16" rid="bib16" class=" bibr popnode">Ekram et al., 2012, href="#bib65" rid="bib65" class=" bibr popnode">Faulk et al., 2013). A recent more extensive screen used comparative whole-genome bisulfite sequencing (WGBS) data and described 55 ERV regions exhibiting some interindividual differential methylation, with validation in two tissues shown for four (href="#bib36" rid="bib36" class=" bibr popnode">Oey et al., 2015). This study confirmed that naturally occurring germline mutations and interindividual genetic differences do not underlie the epigenetic variation observed at the identified regions. While individually informative, there is little or no overlap between the results of these screens. The more challenging task of identifying human metastable epialleles has been tackled before, but the genetic heterogeneity associated with human cohorts remains a significant hindrance in such studies (href="#bib48" rid="bib48" class=" bibr popnode">Silver et al., 2015).Here, we report a novel high-stringency genome-wide approach to comprehensively identify VM-IAPs. Using WGBS and RNA sequencing (RNA-seq) datasets generated from pure non-cycling populations of ex vivo purified naive B and T cells, we identified individual elements possessing features of metastable epialleles. After extensive validation, we have characterized their relationship to each other and to the vast majority of IAPs in the genome that are fully and stably modified. Furthermore, we determined their patterns of inheritance from one generation to the next. Our study identifies a repertoire of loci with the potential to act as markers of normal and compromised environmental contexts and as tools to uncover mechanisms of non-genetic inheritance and, more generally, to provide insights into the mechanisms of silencing at repeats and the impact of mammalian repetitive elements on genome function and phenotype.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介大多数个体间的表型变异都可以通过遗传变异来解释。但是,在动植物模型中的研究表明,非遗传机制可导致表型变异,并且此类表型可在多个世代中继承(,,)。据报道,在没有哺乳动物影响的情况下,没有遗传效应的表观遗传变化在多个世代中都具有持久的表型结果。在哺乳动物中,这种非遗传作用很难用机械方法来解释,定义所观察到的现象的调控过程也具有挑战性。(2)哺乳动物非遗传遗传中最典型的两种范例发生在鼠类Agouti上。可行的黄色(A vy )和Axin Fused(Axin Fu )位点(,)。在这些自然发生的突变小鼠中,由于将胞内A颗粒(IAP)类的内源性逆转录病毒(ERV)分别插入到Agouti或Fused基因座中,遗传上相同的个体在外套颜色或尾巴形态上表现出可量化的表型变异性。表型范围与IAP的长末端重复(LTR)启动子处的DNA甲基化水平的个体差异可重复相关,从而驱动基因(,)的异常表达。在个体中观察到的甲基化水平的一致性与个体之间观察到的甲基化水平和表型结果的变化相反,将A vy 和Axin Fu 定义为“亚稳态的等位基因”。已经观察到在这些亚稳定的等位基因上的甲基化模式的跨代遗传,由此表明后代中的表型分布取决于亲本表型()。此外,A vy 易受环境影响,从而影响甲基化和表型(,,,)。通过遗传筛选,已鉴定出具有与维持A vy 相关的表观遗传功能的蛋白质(href="#bib9" rid="bib9" class=" bibr popnode"> Daxinger等。 ,2013 )。在另一项研究中,在 Cdk5rap1 处插入C57BL / 6J内源IAP通过启动子甲基化调节转录剂量。但是,尚未报告与表型的关联(href="#bib14" rid="bib14" class=" bibr popnode"> Druker等人,2004 )。总之,这些研究表明,IAP亚类的ERV可能具有可变甲基化的潜力,此处称为可变甲基化的IAP(VM-IAP)。控制VM-IAP的建立,行为和继承的特性和潜在机制仍然存在难以捉摸,它们在多大程度上代表了全基因组现象。鼠类基因组的45%由重复序列组成,其中ERV约占基因组的12%。在C57BL / 6J基因组中,IAP子类大约有12,000个ERV(href="#bib49" rid="bib49" class=" bibr popnode"> Smit et al。,2015 )。目前尚不清楚该重复基因组的大部分可调节表型的程度,并且迄今为止尚不了解天然存在的鼠VM-IAP的总数。以前的研究一直在寻找亚稳定的等位基因。策略包括调查菌株内部个体表达模式的表达微阵列数据,筛选与以活性组蛋白修饰H3K4me3为标记的启动子相邻的逆转座子,并对IAP元素进行系统发育分析(href =“#bib57” rid =“ bib57 “ class =” bibr popnode“> Weinhouse等,2011 ,href="#bib16" rid="bib16" class=" bibr popnode"> Ekram等,2012 , href="#bib65" rid="bib65" class=" bibr popnode">福尔克等人,2013 )。最近进行的更广泛的筛选使用了比较的全基因组亚硫酸氢盐测序(WGBS)数据,并描述了55个ERV区域表现出一些个体差异性甲基化,并在两个组织中验证了四个(href =“#bib36” rid =“ bib36”类=“ bibr popnode”> Oey等人,2015 )。这项研究证实,自然发生的种系突变和个体间遗传差异并不构成在确定区域观察到的表观遗传变异的基础。尽管各自提供信息,但这些屏幕的结果之间几乎没有重叠。以前已经解决了识别人类亚稳态大等位基因的更具挑战性的任务,但是与人类队列相关的遗传异质性仍然是此类研​​究中的重大障碍(href="#bib48" rid="bib48" class=" bibr popnode"> Silver等人,2015年)。,我们报告了一种新颖的高严格度全基因组方法,可以全面识别VM-IAP。使用WGBS和RNA测序(RNA-seq)数据集,这些数据集是由 ex 纯化的纯净天然B细胞和T细胞的纯非循环种群生成的,我们确定了具有亚稳态大等位基因特征的单个元件。经过广泛的验证,我们已经表征了它们之间的相互关系以及与基因组中经过充分,稳定修饰的绝大多数IAP的关系。此外,我们确定了它们从一代到下一代的继承模式。我们的研究确定了一个基因座库,该库有可能充当正常和受损环境背景的标记,并可能成为揭示非遗传遗传机制的工具,并且更广泛地提供对重复沉默机制及其影响的见解。哺乳动物在基因组功能和表型上的重复元件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号