首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Quantitative Characterization of α-Synuclein Aggregation in Living Cells through Automated Microfluidics Feedback Control
【2h】

Quantitative Characterization of α-Synuclein Aggregation in Living Cells through Automated Microfluidics Feedback Control

机译:通过自动微流控反馈控制活细胞中α-突触核蛋白聚集的定量表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">Introductionα-Synuclein, encoded by the SNCA gene, is a small (14.5 kDa), intrinsically disordered protein expressed abundantly in a healthy brain. The precise physiological functions of α-synuclein remain poorly understood (), although recent findings point to a role in vesicle trafficking and synaptic physiology (, ). In the human brain, an abnormal increase of α-synuclein expression levels may result in the aggregation of the protein into large complexes and amyloidogenic fibrils with the formation of intraneuronal proteinaceous inclusions known as Lewy bodies (), linked to the Parkinson’s disease (PD) pathogenesis (). Although the matter is still the subject of debate, it is thought that inclusions in the cell are generated by the impairment of degradative pathways and activation of the protein quality-control system (). The mechanisms underlying the formation of protein aggregates seem to be concentration dependent (). Indeed, either duplication or triplication of the wild-type (WT) α-synuclein gene locus is sufficient to cause familial PD (, , ). Moreover, missense mutations in the SNCA gene cause early-onset (A53T, E64K, A30P, G51D, and A53E) and late-onset (H50Q) forms of PD (, , , , , href="#bib38" rid="bib38" class=" bibr popnode">Kiely et al., 2013, href="#bib51" rid="bib51" class=" bibr popnode">Pasanen et al., 2014, href="#bib45" rid="bib45" class=" bibr popnode">Martikainen et al., 2015).Cell-free, cellular, and animal models of PD have been developed to study the formation of inclusions (href="#bib72" rid="bib72" class=" bibr popnode">Visanji et al., 2016, href="#bib39" rid="bib39" class=" bibr popnode">Koprich et al., 2017, href="#bib41" rid="bib41" class=" bibr popnode">Lázaro et al., 2017). Pioneering studies have dissected aggregate and fibril formation in cell-free systems using purified α-synuclein protein (href="#bib27" rid="bib27" class=" bibr popnode">Giasson et al., 1999, href="#bib12" rid="bib12" class=" bibr popnode">Conway et al., 1998). These earlier in vitro studies were semiquantitative in that they did not quantify threshold concentrations for aggregation nor the difference between WT and mutant α-synuclein proteins. Subsequent in vitro studies, building on these previous works, have now precisely quantified the molecular steps of α-synuclein fibril formation and rate constants of associated reactions, thus greatly contributing to current understanding of α-synuclein pathobiology (href="#bib28" rid="bib28" class=" bibr popnode">Giehm et al., 2011, href="#bib9" rid="bib9" class=" bibr popnode">Cohen et al., 2011, href="#bib10" rid="bib10" class=" bibr popnode">Cohen et al., 2012, href="#bib4" rid="bib4" class=" bibr popnode">Buell et al., 2014, href="#bib26" rid="bib26" class=" bibr popnode">Garcia et al., 2014, href="#bib44" rid="bib44" class=" bibr popnode">Lorenzen et al., 2014, href="#bib24" rid="bib24" class=" bibr popnode">Galvagnion et al., 2015, href="#bib25" rid="bib25" class=" bibr popnode">Galvagnion et al., 2016, href="#bib21" rid="bib21" class=" bibr popnode">Flagmeier et al., 2016, href="#bib33" rid="bib33" class=" bibr popnode">Iljina et al., 2016). These in vitro studies have also shown that α-synuclein aggregation kinetics are strongly affected by the presence of lipid vesicles, thus highlighting the importance of studying such processes in whole cells, because the cellular environment is much more complex than the commonly used in vitro conditions (href="#bib21" rid="bib21" class=" bibr popnode">Flagmeier et al., 2016, href="#bib24" rid="bib24" class=" bibr popnode">Galvagnion et al., 2015).Biological processes involved in α-synuclein inclusion formation and clearance are well conserved across evolution, hence yeast can be used to elucidate the molecular basis of the human disease and to screen for therapeutic drugs (href="#bib46" rid="bib46" class=" bibr popnode">Menezes et al., 2015, href="#bib64" rid="bib64" class=" bibr popnode">Schneider et al., 2018). Since its inception (href="#bib49" rid="bib49" class=" bibr popnode">Outeiro and Lindquist, 2003), the yeast PD model with heterologous expression of α-synuclein has been successfully used not only to study molecular mechanisms of the PD but also for high-throughput drug and genetic screenings (href="#bib76" rid="bib76" class=" bibr popnode">Zabrocki et al., 2008, href="#bib46" rid="bib46" class=" bibr popnode">Menezes et al., 2015, href="#bib8" rid="bib8" class=" bibr popnode">Chen et al., 2017). In this model, α-synuclein is expressed from the galactose-inducible promoter, and protein inclusions form with ensuing growth defects and cell death (href="#bib49" rid="bib49" class=" bibr popnode">Outeiro and Lindquist, 2003, href="#bib13" rid="bib13" class=" bibr popnode">Cooper et al., 2006, href="#bib54" rid="bib54" class=" bibr popnode">Petroi et al., 2012).The main limitation of the yeast PD model is that despite forming α-synuclein cytoplasmic inclusions (href="#bib49" rid="bib49" class=" bibr popnode">Outeiro and Lindquist, 2003, href="#bib13" rid="bib13" class=" bibr popnode">Cooper et al., 2006), which are also found in human neurons (href="#bib27" rid="bib27" class=" bibr popnode">Giasson et al., 1999, href="#bib13" rid="bib13" class=" bibr popnode">Cooper et al., 2006), these are not comprised of insoluble α-synuclein amyloid fibrils as found in Lewy bodies (href="#bib67" rid="bib67" class=" bibr popnode">Soper et al., 2008). Rather, inclusions in yeast consist of clusters of vesicles that contain α-synuclein monomers, as well as α-synuclein aggregates formed by large oligomeric species (href="#bib67" rid="bib67" class=" bibr popnode">Soper et al., 2008, href="#bib63" rid="bib63" class=" bibr popnode">Sancenon et al., 2012, href="#bib70" rid="bib70" class=" bibr popnode">Tenreiro et al., 2014, href="#bib46" rid="bib46" class=" bibr popnode">Menezes et al., 2015). Interestingly, soluble oligomers of α-synuclein are also enriched in PD patients, and they likely represent an early aggregated form of the protein that over time transitions to much larger, insoluble aggregates and amyloid fibrils (href="#bib65" rid="bib65" class=" bibr popnode">Sharon et al., 2003).Because α-synuclein controls vesicular dynamics and recycling in neurons, its basic functions seem to be maintained when the protein is expressed in yeast, thus making yeast a relevant model to study the biology and pathobiology of α-synuclein (href="#bib76" rid="bib76" class=" bibr popnode">Zabrocki et al., 2008).So far, the process of α-synuclein aggregation and inclusion formation in vivo in the yeast PD model has been characterized only qualitatively in terms of the number of integrated genome copies because of technological limitations (href="#bib46" rid="bib46" class=" bibr popnode">Menezes et al., 2015, href="#bib49" rid="bib49" class=" bibr popnode">Outeiro and Lindquist, 2003, href="#bib57" rid="bib57" class=" bibr popnode">Popova et al., 2015). Hence, the most in-depth characterization currently available is that three copies of WT α-synuclein, versus two copies of A53T α-synuclein, are needed to observe α-synuclein inclusions in the yeast PD model (href="#bib54" rid="bib54" class=" bibr popnode">Petroi et al., 2012).Here, we overcame current technical limitations enabling characterization of the yeast PD model quantitatively by dynamically regulating α-synuclein protein expression over time in the very same cell population, that is, without the need of using strains with different numbers of genomic integrations of α-synuclein. In so doing, we demonstrated that α-synuclein inclusion formation in yeast is strictly concentration dependent, but not time dependent. We precisely measured both the WT and disease-associated A53T α-synuclein protein aggregation thresholds, we studied the effects of inclusions on cell-cycle progression, and we dissected the contributions of proteasomal and autophagic pathways on the dynamics of A53T α-synuclein inclusions’ clearance.In addition to contributing to the biology of PD, our results have relevance for therapeutic applications because the yeast PD model is extensively used in large-scale screening of therapeutic small molecules and modifier genes (href="#bib13" rid="bib13" class=" bibr popnode">Cooper et al., 2006, href="#bib8" rid="bib8" class=" bibr popnode">Chen et al., 2017).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介由SNCA基因编码的α-突触核蛋白很小(14.5 kDa),本质上无序的蛋白质在健康的大脑中大量表达。尽管最近的发现指出了α-突触核蛋白的精确生理功能在囊泡运输和突触生理学中的作用,但仍知之甚少。在人脑中,α-突触核蛋白表达水平的异常升高可能导致蛋白质聚集成大的复合物和淀粉样蛋白原纤维,并形成称为路易小体的神经内蛋白质包裹体,与帕金森氏病(PD)相关发病机理()。尽管此事仍是争论的主题,但人们认为细胞中的内含物是由降解途径的破坏和蛋白质质量控​​制系统的激活产生的。蛋白质聚集体形成的潜在机制似乎与浓度有关()。实际上,野生型(WT)α-突触核蛋白基因位点的重复或重复足以引起家族性PD(,,)。此外,SNCA基因中的错义突变会导致PD的早发(A53T,E64K,A30P,G51D和A53E)和晚发(H50Q)形式的PD(“,,,,href =“#bib38” rid = “ bib38” class =“ bibr popnode”>基里等人,2013 ,href="#bib51" rid="bib51" class=" bibr popnode">帕萨宁等人,2014 ,href="#bib45" rid="bib45" class=" bibr popnode"> Martikainen et al。,2015 )。已经开发了无细胞,PD和动物模型的PD用于研究夹杂物的形成(href="#bib72" rid="bib72" class=" bibr popnode"> Visanji et al。,2016 ,href =“#bib39” rid =“ bib39”类=“ bibr popnode”>科普里奇等人,2017 ,href="#bib41" rid="bib41" class=" bibr popnode">拉萨罗等人,2017 )。开拓性研究已经使用纯化的α-突触核蛋白蛋白在无细胞系统中解剖了聚集体和原纤维形成(href="#bib27" rid="bib27" class=" bibr popnode"> Giasson et al。,1999 ,href="#bib12" rid="bib12" class=" bibr popnode"> Conway等,1998 )。这些较早的体外研究是半定量的,因为它们没有量化聚集的阈值浓度,也没有量化野生型和突变型α-突触核蛋白之间的差异。随后在体外研究的基础上,基于这些先前的工作,现在已经精确地定量了α-突触核蛋白原纤维形成的分子步骤和相关反应的速率常数,从而极大地促进了对α-突触核蛋白病理生物学的当前理解(href =“#bib28 “ rid =” bib28“ class =” bibr popnode“>吉姆等人,2011 ,href="#bib9" rid="bib9" class=" bibr popnode">科恩等人,2011 ,href="#bib10" rid="bib10" class=" bibr popnode">科恩等人,2012 ,href =“#bib4” rid =“ bib4”类=“ bibr popnode”> Buell等人,2014 ,href="#bib26" rid="bib26" class=" bibr popnode">加西亚等人,2014 ,href =“#bib44” rid =“ bib44” class =“ bibr popnode”>洛伦岑等人,2014 ,href="#bib24" rid="bib24" class=" bibr popnode">加尔维尼翁et al。,2015 ,href="#bib25" rid="bib25" class=" bibr popnode"> Galvagnion et al。,2016 ,href =“#bib21” rid =“ bib21” class =“ bibr popnode”> Flagmeier等人,2016 ,href =“#bib33” rid =“ bib33” class =“ bibr popnode“> Iljina等人,2016 )。这些体外研究还表明,α-突触核蛋白的聚集动力学受脂质囊泡的存在强烈影响,因此突显了在全细胞中研究此类过程的重要性,因为细胞环境比通常在体外条件下使用的细胞环境复杂得多(href="#bib21" rid="bib21" class=" bibr popnode"> Flagmeier等人,2016 ,href =“#bib24” rid =“ bib24” class =“ bibr popnode “> Galvagnion等人,2015 )。在整个进化过程中,α-突触核蛋白包涵体形成和清除的生物学过程均得到了很好的保护,因此酵母可用于阐明人类疾病的分子基础并筛选治疗性药物药物(href="#bib46" rid="bib46" class=" bibr popnode"> Menezes et al。,2015 ,href =“#bib64” rid =“ bib64” class =“ bibr popnode“> Schneider等人,2018 )。自成立以来(href="#bib49" rid="bib49" class=" bibr popnode"> Outeiro和Lindquist,2003 ),具有α-突触核蛋白异源表达的酵母PD模型不仅已成功用于研究PD的分子机制,而且已成功用于高通量药物和基因筛选(href =“#bib76” rid =“ bib76”类=“ bibr popnode”> Zabrocki等,2008 ,href="#bib46" rid="bib46" class=" bibr popnode"> Menezes等,2015 ,href =“#bib8” rid =“ bib8” class =“ bibr popnode”> Chen等人,2017 )。在此模型中,α-突触核蛋白从半乳糖诱导型启动子表达,蛋白质包涵体形成并伴随着生长缺陷和细胞死亡(href="#bib49" rid="bib49" class=" bibr popnode"> Outeiro和Lindquist,2003 ,href="#bib13" rid="bib13" class=" bibr popnode">库珀等人,2006 ,href =“#bib54” rid =“ bib54“ class =” bibr popnode“> Petroi等人,2012 )。酵母PD模型的主要局限在于尽管形成了α-突触核蛋白胞质内含物(href =”#bib49“ rid =” bib49“ class =” bibr popnode“> Outeiro和Lindquist,2003 ,href="#bib13" rid="bib13" class=" bibr popnode"> Cooper等人,2006 ) ,也可以在人类神经元中找到(href="#bib27" rid="bib27" class=" bibr popnode"> Giasson等人,1999 ,href =“#bib13” rid = “ bib13” class =“ bibr popnode”> Cooper等人,2006 ),它们不包含在路易体中发现的不溶性α-突触核蛋白淀粉样原纤维(href =“#bib67” rid =“ bib67“ class =” bibr popnode“> Soper等,20 08 )。相反,酵母中的内含物由含有α-突触核蛋白单体的囊泡簇以及大型寡聚体形成的α-突触核蛋白聚集体组成(href="#bib67" rid="bib67" class=" bibr popnode"> Soper et al。,2008 ,href="#bib63" rid="bib63" class=" bibr popnode"> Sancenon et al。,2012 ,href =“#bib70” rid =“ bib70” class =“ bibr popnode”> Tenreiro等人,2014 ,href="#bib46" rid="bib46" class=" bibr popnode"> Menezes等人,2015 < / a>)。有趣的是,PD患者中也富含α-突触核蛋白的可溶性寡聚体,它们很可能代表了蛋白质的早期聚集形式,随着时间的推移会转变成更大的不溶性聚集体和淀粉样原纤维(href =“#bib65” rid = “ bib65” class =“ bibr popnode”> Sharon等人,2003 )。由于α-突触核蛋白控制着神经元中的囊泡动力学和循环,因此当蛋白质在酵母中表达时,其基本功能似乎得以维持。使得酵母成为研究α-突触核蛋白的生物学和病理生物学的相关模型(href="#bib76" rid="bib76" class=" bibr popnode"> Zabrocki等,2008 )。 ,由于技术上的局限性,仅在酵母基因组模型中就整合基因组拷贝数进行了定性地表征了酵母PD模型中α-突触核蛋白聚集和包涵体形成的过程(href =“#bib46” rid =“ bib46” class =“ bibr popnode”> Menezes等人,2015 ,href="#bib49" rid="bib49" class=" bibr popnode"> Outeiro和Lindquist,2003年,href="#bib57" rid="bib57" class=" bibr popnode"> Popova等人,2015 )。因此,当前可获得的最深入的表征是,需要三份WTα-突触核蛋白而不是两份A53Tα-突触核蛋白才能观察酵母PD模型中的α-突触核蛋白包涵体(href =“#bib54 “ rid =“ bib54” class =“ bibr popnode”> Petroi等人,2012 )。在此,我们克服了当前的技术局限性,即通过随着时间的流逝动态调节α-突触核蛋白的蛋白表达来定量表征酵母PD模型。在完全相同的细胞群中,即不需要使用具有不同数量的α-突触核蛋白基因组整合的菌株。通过这样做,我们证明了酵母中α-突触核蛋白的包裹物形成严格地取决于浓度,而不取决于时间。我们精确测量了野生型和疾病相关的A53Tα-突触核蛋白蛋白聚集阈值,研究了内含物对细胞周期进程的影响,并剖析了蛋白酶体和自噬途径对A53Tα-突触核蛋白内含物动力学的贡献。除有助于PD的生物学外,我们的研究结果还与治疗应用相关,因为酵母PD模型已广泛用于大规模筛选治疗性小分子和修饰基因(href =“#bib13” rid = “ bib13” class =“ bibr popnode”>库珀等人,2006 ,href="#bib8" rid="bib8" class=" bibr popnode">陈等人,2017 )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号