首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Stem Cell Proliferation Is Kept in Check by the Chromatin Regulators Kismet/CHD7/CHD8 and Trr/MLL3/4
【2h】

Stem Cell Proliferation Is Kept in Check by the Chromatin Regulators Kismet/CHD7/CHD8 and Trr/MLL3/4

机译:染色质调节剂Kismet / CHD7 / CHD8和Trr / MLL3 / 4抑制了干细胞的增殖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionRegulation of stem cell proliferation rates is critical in adult tissues, which need to maintain basal renewal and undergo damage-induced regenerative responses. Consequently, the dysregulation of stem cell proliferation can have pathological effects. Ample evidence now supports a functional link between the deregulated proliferation of stem cells and cancer initiation, as well as metastatic progression (, ). Interestingly, the loss of epigenetic control is a major contributor to stem cell misregulation including proliferation deregulation during aging (, , ). Therefore, in addition to roles of epigenetic regulation during differentiation of stem-cell-derived lineages, chromatin modulation also has important, though not yet well understood, roles in the control of stem cell proliferation.A useful model to investigate adult stem cell regulation is the Drosophila midgut, which is maintained by around 1,000 multipotent intestinal stem cells (ISCs). Most ISC divisions lead to asymmetric daughter cell fates, resulting in a self-renewed ISC and a sister enteroblast (EB) cell (A). A majority of EBs receive high levels of Notch signaling and differentiate into enterocyte cells (ECs). Rare stem cell divisions produce an enteroendocrine precursor cell (EEP) with low or no Notch signaling, which is thought to divide once to make two enteroendocrine cells (EEs) (, , ). In response to epithelial damage, several signaling pathways become activated and coordinate ISC proliferation and differentiation (see for review, ). Of primary importance are signals that the ISCs receive to activate the Jak/Stat and Epidermal Growth Factor Receptor (EGFR) pathways (, , , , , href="#bib113" rid="bib113" class=" bibr popnode">Wang et al., 2014, href="#bib114" rid="bib114" class=" bibr popnode">Xu et al., 2011). Moreover, other pathways such as Insulin, Hippo, Jun Kinase, BMP, Wnt, and Hedgehog also control ISC proliferation (href="#bib7" rid="bib7" class=" bibr popnode">Biteau et al., 2008, href="#bib19" rid="bib19" class=" bibr popnode">Cordero et al., 2012, href="#bib58" rid="bib58" class=" bibr popnode">Li et al., 2013, href="#bib59" rid="bib59" class=" bibr popnode">Li et al., 2014, href="#bib60" rid="bib60" class=" bibr popnode">Lin et al., 2008, href="#bib75" rid="bib75" class=" bibr popnode">O'Brien et al., 2011, href="#bib86" rid="bib86" class=" bibr popnode">Ren et al., 2010, href="#bib96" rid="bib96" class=" bibr popnode">Shaw et al., 2010, href="#bib101" rid="bib101" class=" bibr popnode">Staley and Irvine, 2010, href="#bib107" rid="bib107" class=" bibr popnode">Tian and Jiang, 2014, href="#bib108" rid="bib108" class=" bibr popnode">Tian et al., 2015, href="#bib109" rid="bib109" class=" bibr popnode">Tian et al., 2017). Evidence suggests that there are also mechanisms to limit ISC responsiveness, tuning down cell division when sufficient renewal has occurred (href="#bib37" rid="bib37" class=" bibr popnode">Guo et al., 2013, href="#bib43" rid="bib43" class=" bibr popnode">Hochmuth et al., 2011), though this process is not well understood.href="/pmc/articles/PMC6547167/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6547167_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6547167/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6547167/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Loss of kismet Provokes ISC Accumulation without Affecting Terminal Differentiation(A) The ISCs divide to self-renew and to produce a precursor cell, the EB, that subsequently terminally differentiates into an EC or is thought to divide once as an EEP to produce two EE cells.(B and C) Wild-type (B) and kis10D26 mutant (C) MARCM clones, 5 days after heat shock (AHS).(D) Quantification of (B) and (C).(E) Scheme of wild-type and kismet mutant clones.(F) Scheme of kismet gene and Kismet protein (Long and short isoforms: Kis L and Kis S): chromodomains (green), ATPase domain (red), BRK domain (blue). All kis alleles resulted in nonsense mutations: nucleotide changes and corresponding putative resulting truncated proteins are shown.(G–L) Wild-type and kis10D26 MARCM clones at 9 days AHS. Arrows in (G)–(H′) and (I)–(J′) show EE cells marked by DH31 or LTK2, respectively.(M–P) Quantification of the total cells per clone (M), number of EE cells per clone (Prospero+) (N), number of ECs (Pdm1+ cells per clone) (O), and the ratio of EE (Prospero+ cells / EC (polyploid nucleus >7 μm) per clone (P).(Q and R) Vertical sections through the midgut epithelium of control (Q) and kis10D26 mutant (R) MARCM clones, 9 days AHS. Arrows show apical membrane.In (D) and (M)–(P), A two-tailed Mann-Whitney statistical test was used; mean values in red; error bars, SEM; ns = non-significant, **p < 0.01, ****p < 0.0001. Scale bars, 20 μm.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介对成年组织中干细胞增殖速率的调节至关重要,该组织需要维持基础更新并遭受损害诱导的再生反应。因此,干细胞增殖失调可能具有病理作用。现在有充分的证据支持干细胞增殖失调与癌症的发生以及转移性进展之间的功能联系。有趣的是,表观遗传控制的丧失是干细胞失调的主要因素,包括衰老过程中增殖失调。因此,除了表观遗传调控在干细胞衍生谱系分化过程中的作用外,染色质调控在干细胞增殖控制中也具有重要作用,尽管尚未被很好地理解。果蝇中肠,由约1,000个多能肠道干细胞(ISC)维持。大多数ISC分裂会导致子代细胞命运不对称,从而导致自我更新的ISC和姊妹成肠细胞(EB)细胞(A)。大多数EB接收到高水平的Notch信号,并分化为肠上皮细胞(EC)。罕见的干细胞分裂产生的Notch信号低或无Notch信号的肠内分泌前体细胞(EEP),据认为,一旦分裂,便会产生两个肠内分泌细胞(EEs)(,,)。响应上皮损伤,一些信号通路被激活并协调ISC增殖和分化(请参阅参考资料)。 ISC收到的激活Jak / Stat和表皮生长因子受体(EGFR)途径的信号最为重要(,,,,,,href="#bib113" rid="bib113" class=" bibr popnode"> Wang et al。,2014 ,href="#bib114" rid="bib114" class=" bibr popnode"> Xu et al。,2011 )。此外,其他途径如胰岛素,河马,Jun Kinase,BMP,Wnt和刺猬也可以控制ISC的增殖(href="#bib7" rid="bib7" class=" bibr popnode"> Biteau et al。,2008 ,href="#bib19" rid="bib19" class=" bibr popnode"> Cordero et al。,2012 ,href =“#bib58” rid =“ bib58”类=“ bibr popnode”> Li等,2013 ,href="#bib59" rid="bib59" class=" bibr popnode"> Li等,2014 ,href =“#bib60” rid =“ bib60” class =“ bibr popnode”> Lin等人,2008 ,href="#bib75" rid="bib75" class=" bibr popnode"> O 'Brien et al。,2011 ,href="#bib86" rid="bib86" class=" bibr popnode"> Ren et al。,2010 ,href =“#bib96 “ rid =” bib96“ class =” bibr popnode“> Shaw等人,2010 ,href="#bib101" rid="bib101" class=" bibr popnode"> Staley and Irvine,2010 < / a>,href="#bib107" rid="bib107" class=" bibr popnode">田和江,2014 ,href =“#bib108” rid =“ bib108” class =“ bibr popnode“> Tian等人,2015 ,href="#bib109" rid="bib109" class=" bibr popnode"> Ti等,2017年)。有证据表明,还有一些机制可以限制ISC反应性,在发生足够的更新时降低细胞分裂(href="#bib37" rid="bib37" class=" bibr popnode"> Guo et al。,2013 ,href="#bib43" rid="bib43" class=" bibr popnode"> Hochmuth et al。,2011 ),尽管此过程尚未广为人知。<!-fig ft0- -> <!-图模式=文章f1-> href =“ / pmc / articles / PMC6547167 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob =“ ob- fig1“> <!-fig / graphic | fig / alternatives / graphic mode =” anchored“ m1-> class =” inline_block ts_canvas“ href =” / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html ?title =点击%20on%20image%20to%20zoom&p = PMC3&id = 6547167_gr1.jpg“ target =” tileshopwindow“> target =” object“ href =” / pmc / articles / PMC6547167 / figure / fig1 / ?report = objectonly“>在单独的窗口中打开 class =” figpopup“ href =” / pmc / articles / PMC6547167 / figure / fig1 /“ target =” figure“ rid-figpopup = “ fig1” rid-ob =“ ob-fig1”>图1 <!-标题a7-> ki的丢失smet在不影响终末分化的情况下激发了ISC的积累(A)ISC进行自我更新并产生一个前体细胞EB,该前体细胞随后最终分化为EC或被认为一次分裂为一个EEP以产生两个EE细胞。 (B和C)热激(AHS)后5天的野生型(B)和kis 10D26 突变体(C)MARCM克隆。(D)(B)和(C)的定量。 (E)野生型和基斯梅特突变克隆的方案。(F)基斯梅特基因和Kismet蛋白的方案(长和短同工型:Kis L和Kis S):染色体结构域(绿色),ATPase结构域(红色),BRK域(蓝色)。所有kis等位基因均导致无意义突变:显示核苷酸变化和相应的推定截短蛋白。(GL)AHS 9天时的野生型和kis 10D26 MARCM克隆。 (G)–(H')和(I)–(J')中的箭头分别显示以DH31或LTK2标记的EE细胞。(M–P)每个克隆的总细胞数(M),EE细胞数每个克隆(Prospero +)(N),EC数量(每个克隆Pdm1 +细胞)(O)和每个克隆EE的比例(Prospero +细胞/ EC(多倍体核> 7μm)(P)。(Q和R)对照(Q)和kis 10D26 突变(R)MARCM克隆的中肠上皮的垂直截面,AHS 9天,箭头显示顶膜。在(D)和(M)–(P)中,使用了两尾曼恩-惠特尼统计检验;平均值为红色;误差线为SEM; ns =不显着,** p <0.01,**** p <0.0001。比例尺为20μm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号