首页> 美国卫生研究院文献>Elsevier Sponsored Documents >TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit
【2h】

TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit

机译:TNF通过线粒体-溶酶体-内质网回路诱导结核病中的病原性程序性巨噬细胞坏死

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe pathogenic life cycle of Mycobacterium tuberculosis (Mtb), the agent of human tuberculosis (TB), is fueled by its multiple interactions with host macrophages (, ). Mycobacteria use macrophages to traverse host epithelial barriers to enter deeper tissues, where they recruit additional macrophages to form granulomas, pathognomonic structures that can serve as intracellular bacterial growth niches (, ). Granuloma macrophages can undergo necrosis, a key pathogenic event that further increases bacterial growth in the more permissive extracellular milieu (, ), thereby increasing disease morbidity and transmission (, , ).Mycobacterium-macrophage interactions and resultant macrophage fates can be detailed in the optically transparent zebrafish larva infected with Mycobacterium marinum (Mm), a close genetic relative of Mtb (, ). In this model, distinct host genetic mutations that increase macrophage necrosis render the host hypersusceptible by promoting unrestricted extracellular mycobacterial growth (, , , ). One genetic perturbation that produces hypersusceptibility through macrophage necrosis increases expression of leukotriene A4 hydrolase (LTA4H), which catalyzes the final step in the synthesis of the inflammatory lipid mediator leukotriene B4 (LTB4) (href="#bib91" rid="bib91" class=" bibr popnode">Tobin et al., 2012). Humans with a functional LTA4H promoter variant that increases LTA4H expression are also hypersusceptible to TB (href="#bib89" rid="bib89" class=" bibr popnode">Thuong et al., 2017, href="#bib91" rid="bib91" class=" bibr popnode">Tobin et al., 2012). Among cases of tuberculous meningitis, the severest form of TB, LTA4H-high individuals had increased risk of death. Consistent with inflammation-induced mortality, survival was dramatically increased among patients who received adjunctive anti-inflammatory therapy with glucocorticoids (href="#bib89" rid="bib89" class=" bibr popnode">Thuong et al., 2017, href="#bib91" rid="bib91" class=" bibr popnode">Tobin et al., 2012).The human relevance of the zebrafish findings provided the impetus to carry out a detailed mechanistic dissection of the necrosis pathway. In the zebrafish, we showed that susceptibility of the LTA4H-high state is due to the excessive production of the pro-inflammatory cytokine tumor necrosis factor (TNF) that, at optimal levels, is host protective (href="#bib91" rid="bib91" class=" bibr popnode">Tobin et al., 2012). Excess TNF triggers RIPK1- and RIPK3-dependent programmed necrosis of mycobacterium-infected macrophages, but not uninfected macrophages in the same animal (href="#bib74" rid="bib74" class=" bibr popnode">Roca and Ramakrishnan, 2013). TNF-RIPK1-RIPK3 interactions increase mitochondrial reactive oxygen species (ROS) production, which are required for necrosis along with cyclophilin D, a mitochondrial matrix protein (href="#bib74" rid="bib74" class=" bibr popnode">Roca and Ramakrishnan, 2013). Oxidative stress can activate cyclophilin D, which promotes sustained opening of the mitochondrial permeability transition pore complex (mPTP); this leads to disruption of the membrane potential and ATP depletion (href="#bib7" rid="bib7" class=" bibr popnode">Baines, 2010, href="#bib13" rid="bib13" class=" bibr popnode">Bernardi, 2013, href="#bib41" rid="bib41" class=" bibr popnode">Halestrap et al., 2004, href="#bib65" rid="bib65" class=" bibr popnode">Nakagawa et al., 2005). The dual requirement for mitochondrial ROS and cyclophilin D would be consistent with a mitochondrion-intrinsic necrosis pathway where TNF-induced mitochondrial ROS activate cyclophilin D (href="/pmc/articles/PMC6736209/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A).href="/pmc/articles/PMC6736209/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6736209_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6736209/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6736209/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Ceramide Causes Necrosis through Cathepsin D, BID, and BAX(A) Cartoon of TNF-mediated necrosis pathway components. CYPD, cyclophilin D; M, mitochondrion; L, lysosome.(B) Confocal images of granulomas in 3 or 5 dpi TNF-high or control larvae with yellow fluorescent macrophages infected with red fluorescent Mm. Arrowheads, extracellular bacteria; arrows, extracellular, cording bacteria. Scale bar, 100 μm.(C) Cording in 5 dpi TNF-high and control larvae.(D) Cording in 5 dpi TNF-high or control larvae treated with pepstatin A.(E) Cording in 5 dpi TNF-high or control larvae treated with E64d.(F) Cording in 5 dpi TNF-high and control larvae that are wild-type (WT) or cathepsin D morphant.(G) Cording in 5 dpi TNF-high and control larvae that are WT or BID morphant.(H) Cording in 5dpi TNF-high and control larvae treated with BI-6C9.(I) Cording in 5 dpi TNF-high or control larvae that are WT or BAXA mutant.(J) Cording in 5 dpi TNF-high and control larvae that are WT or BAXB mutant.(C–J) p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 (Fisher’s exact test). Each panel representative of 3–6 independent experiments.See also href="/pmc/articles/PMC6736209/figure/figs1/" target="figure" class="fig-table-link figpopup" rid-figpopup="figs1" rid-ob="ob-figs1" co-legend-rid="lgnd_figs1">Figure S1.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介结核分枝杆菌(Mtb)是人类结核病(TB)的致病性生命周期),是由于它与宿主巨噬细胞(,)的多次相互作用而产生的。分枝杆菌利用巨噬细胞穿越宿主上皮屏障进入更深的组织,在那里它们募集额外的巨噬细胞以形成肉芽肿,可以作为细胞内细菌生长位的病理结构。肉芽肿巨噬细胞会发生坏死,这是一个关键的致病性事件,可进一步增加细菌在更宽松的细胞外环境中的生长,从而增加疾病的发病率和传播率。分枝杆菌与巨噬细胞的相互作用以及由此产生的巨噬细胞的命运可以在光学上进行详细描述。透明斑马鱼幼虫感染了结核分枝杆菌(Mm),它是Mtb的近亲。在此模型中,增加巨噬细胞坏死的独特宿主遗传突变通过促进不受限制的细胞外分枝杆菌生长(,,,)使宿主极易感。一种通过巨噬细胞坏死产生高敏感性的遗传扰动会增加白三烯A4水解酶(LTA4H)的表达,这催化了炎症脂质介质白三烯B4(LTB4)的合成的最后一步(href =“#bib91” rid =“ bib91 “ class =” bibr popnode“> Tobin等人,2012 )。具有增加LTA4H表达的功能性LTA4H启动子变异的人类也易患结核病(href="#bib89" rid="bib89" class=" bibr popnode"> Thuong et al。,2017 ,href =“#bib91” rid =“ bib91” class =“ bibr popnode”> Tobin等人,2012 )。在结核性脑膜炎病例中,TB,LTA4H高的结核是最严重的形式,其死亡风险增加。与炎症引起的死亡率一致,接受糖皮质激素辅助抗炎治疗的患者的生存率显着提高(href="#bib89" rid="bib89" class=" bibr popnode"> Thuong等人,2017 < / a>,href="#bib91" rid="bib91" class=" bibr popnode"> Tobin等人,2012 )。斑马鱼发现与人类的相关性为开展动物研究提供了动力。坏死途径的详细机械解剖。在斑马鱼中,我们显示出LTA4H高状态的敏感性是由于促炎性细胞因子肿瘤坏死因子(TNF)的过量产生所致,在最佳水平下,它对宿主具有保护作用(href =“#bib91” rid =“ bib91” class =“ bibr popnode”> Tobin等人,2012 )。过多的TNF会触发分枝杆菌感染的巨噬细胞的RIPK1和RIPK3依赖性程序性坏死,但同一动物中未感染的巨噬细胞却不会触发(href="#bib74" rid="bib74" class=" bibr popnode"> Roca和Ramakrishnan, 2013 )。 TNF-RIPK1-RIPK3相互作用增加了线粒体活性氧(ROS)的产生,这是坏死与亲环蛋白D(线粒体基质蛋白)一起坏死所必需的(href =“#bib74” rid =“ bib74” class =“ bibr popnode” > Roca and Ramakrishnan,2013 )。氧化应激可以激活亲环蛋白D,从而促进线粒体通透性过渡孔复合物(mPTP)的持续打开。这会导致膜电位破坏和ATP耗竭(href="#bib7" rid="bib7" class=" bibr popnode"> Baines,2010 ,href =“#bib13” rid = “ bib13” class =“ bibr popnode”>贝纳迪,2013 ,href="#bib41" rid="bib41" class=" bibr popnode"> Halestrap等,2004 ,< a href =“#bib65” rid =“ bib65” class =“ bibr popnode”>中川等人,2005 )。线粒体ROS和亲环蛋白D的双重要求与线粒体内在性坏死途径一致,其中TNF诱导的线粒体ROS激活亲环蛋白D(href =“ / pmc / articles / PMC6736209 / figure / fig1 /” target =“ figure “ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 A)。<!-图ft0-> <!-图模式=文章f1-> href =“ / pmc / articles / PMC6736209 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob = “ ob-fig1”> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title =点击%20on%20image%20to%20zoom&p = PMC3&id = 6736209_gr1.jpg“ target =” tileshopwindow“> target =” object“ href =” / pmc / articles / PMC6736209 / figure / fig1 /?report = objectonly“>在单独的窗口中打开 class =” figpopup“ href =” / pmc / articles / PMC6736209 / figure / fig1 /“ target =” figure“摆脱-figpopup =“ fig1” rid-ob =“ ob-fig1”>图1 < !-标题a7->神经酰胺通过组织蛋白酶D,BID和BAX引起坏死(A)TNF介导的坏死途径成分的卡通。 CYPD,亲环蛋白D; M,线粒体;大号(B)3或5 dpi TNF高的肉芽肿的共聚焦图像或带有被红色荧光Mm感染的黄色荧光巨噬细胞的对照幼虫。箭头,细胞外细菌;箭头,细胞外,细菌。比例尺,100μm。(C)用5 dpi TNF高的对照组和幼虫扎线。(D)用5 dpi胃蛋白酶抑素A处理的高幼虫或对照组。(E)用5 dpi TNF高的对照组或对照的绳索。用E64d处理的幼虫。(F)用5 dpi TNF高的野生型(WT)或组织蛋白酶D型变体的对照幼虫。(G)用5 dpi TNF高的野生型和控制型WT或BID morphant的幼虫。 (H)用BI-6C9处理的高5dpi TNF幼虫和对照幼虫。(I)用WT或BAXA突变体的5 dpi TNF高雌虫或对照幼虫。 (C–J) p <0.05;控制WT或BAXB突变体的幼虫。 ∗∗ p <0.01; ∗∗∗ p <0.001(费舍尔的精确检验)。每个小组代表3至6个独立实验。另请参见href =“ / pmc / articles / PMC6736209 / figure / figs1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ figs1 “ rid-ob =” ob-figs1“ co-legend-rid =” lgnd_figs1“>图S1 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号