首页> 美国卫生研究院文献>ACS Omega >Morphology-Controlled One-Step Synthesis of NanostructuredLiNi1/3Mn1/3Co1/3O2 Electrodesfor Li-Ion Batteries
【2h】

Morphology-Controlled One-Step Synthesis of NanostructuredLiNi1/3Mn1/3Co1/3O2 Electrodesfor Li-Ion Batteries

机译:形态控制的一步法合成纳米结构LiNi1 / 3Mn1 / 3Co1 / 3O2电极锂离子电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanostructured electrodes effectively enhance the kinetics of the charge/discharge process in lithium-ion (Li-ion) batteries. However, the fabrication of these electrodes often involves complex processing steps. This study demonstrates a one-step improved flame spray pyrolysis synthesis approach to directly deposit the most common Li-ion battery cathode material LiNi1/3Mn1/3Co1/3O2 onto current collectors, which is identified as reactive spray deposition technology (RSDT). Because of the economical and continuous nature of RSDT, the industrial scale of manufacturing nanostructured electrodes for Li-ion batteries can be potentially developed. Morphologies of the electrodes are well controlled so that their electrochemical properties can be tailored to accommodate intended applications. In detail, by adjusting the precursor concentration in the solution feed during the operation of RSDT, the specific surface area of synthesized material can be fine-tuned accordingly. Although the electrodes prepared with low precursor concentration exhibit the highest surface area and deliver the highest initial discharge capacity of 192.1 mAh g–1, the most stable cycling performance is demonstratedby the electrodes fabricated with high precursor concentration, retaining93.6% of the initial capacity after 100 cycles in half-cell testing.This innovative direct deposition method considerably simplifies themanufacture process of high-performance nanostructured electrodesand enables effortless modification of their properties. Moreover,no hazardous waste is generated from this synthesis route.
机译:纳米结构电极可有效增强锂离子(Li-ion)电池中充电/放电过程的动力学。然而,这些电极的制造通常涉及复杂的处理步骤。这项研究表明了一种一步改进的火焰喷涂热解合成方法,可以将最常见的锂离子电池正极材料LiNi1 / 3Mn1 / 3Co1 / 3O2直接沉积到集流体上,这被认为是反应喷涂技术(RSDT)。由于RSDT的经济性和连续性,可以潜在地发展制造用于锂离子电池的纳米结构电极的工业规模。电极的形态得到很好的控制,因此可以调整其电化学性能以适应预期的应用。详细地,通过在RSDT的操作期间调节溶液进料中的前体浓度,可以相应地微调合成材料的比表面积。尽管以低前驱物浓度制备的电极具有最大的表面积,并具有192.1 mAh g –1 的最高初始放电容量,但仍显示出最稳定的循环性能通过高前体浓度制造的电极半电池测试100次循环后,初始容量的93.6%。这种创新的直接沉积方法大大简化了高性能纳米结构电极的制造工艺并轻松修改其属性。此外,该合成路线不会产生有害废物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号