首页> 美国卫生研究院文献>Membranes >Combining Computational Screening and Machine Learning to Predict Metal–Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air
【2h】

Combining Computational Screening and Machine Learning to Predict Metal–Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air

机译:结合计算筛选和机器学习来预测用于去除空气中 CH4 或 H2 的金属-有机框架吸附剂和膜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Separating and capturing small amounts of CH4 or H2 from a mixture of gases, such as coal mine spent air, at a large scale remains a great challenge. We used large-scale computational screening and machine learning (ML) to simulate and explore the adsorption, diffusion, and permeation properties of 6013 computation-ready experimental metal–organic framework (MOF) adsorbents and MOF membranes (MOFMs) for capturing clean energy gases (CH4 and H2) in air. First, we modeled the relationships between the adsorption and the MOF membrane performance indicators and their characteristic descriptors. Among three ML algorithms, the random forest was found to have the best prediction efficiency for two systems (CH4/(O2 + N2) and H2/(O2 + N2)). Then, the algorithm was further applied to quantitatively analyze the relative importance values of seven MOF descriptors for five performance metrics of the two systems. Furthermore, the 20 best MOFs were also selected. Finally, the commonalities between the high-performance MOFs were analyzed, leading to three types of material design principles: tuned topology, alternative metal nodes, and organic linkers. As a result, this study provides microscopic insights into the capture of trace amounts of CH4 or H2 from air for applications involving coal mine spent air and hydrogen leakage.
机译:从混合气体(如煤矿废气)中大规模分离和捕获少量 CH4 或 H2 仍然是一项巨大的挑战。我们使用大规模计算筛选和机器学习 (ML) 来模拟和探索 6013 种计算就绪的实验金属有机框架 (MOF) 吸附剂和 MOF 膜 (MOFM) 的吸附、扩散和渗透特性,用于捕获空气中的清洁能源气体(CH4 和 H2)。首先,我们模拟了吸附和 MOF 膜性能指标之间的关系及其特征描述符。在三种 ML 算法中,发现随机森林对两个系统 (CH4/(O2 + N2) 和 H2/(O2 + N2)) 具有最佳预测效率。然后,进一步应用该算法定量分析两个系统的 5 个性能指标的 7 个 MOF 描述符的相对重要性值。此外,还选择了 20 个最佳 MOF。最后,分析了高性能 MOF 之间的共性,得出了三种类型的材料设计原则:调整拓扑、替代金属节点和有机连接子。因此,本研究为从空气中捕获痕量 CH4 或 H2 提供了微观见解,用于涉及煤矿废气和氢气泄漏的应用。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号