首页> 美国卫生研究院文献>Romanian Journal of Morphology and Embryology >Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma
【2h】

Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma

机译:病理学中的深度学习和迁移学习。案例研究:基底细胞癌的分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Establishing basal cell carcinoma (BCC) subtype is sometimes challenging for pathologists. Deep-learning (DL) algorithms are an emerging approach in image classification due to their performance, accompanied by a new concept – transfer learning, which implies replacing the final layers of a trained network and retraining it for a new task, while keeping the weights from the imported layers. A DL convolution-based software, capable of classifying 10 subtypes of BCC, was designed. Transfer learning from three general-purpose image classification networks (AlexNet, GoogLeNet, and ResNet-18) was used. Three pathologists independently labeled 2249 patches. Ninety percent of data was used for training and 10% for testing on 100 independent training sequences. Each of the resulted networks independently labeled the whole dataset. Mean and standard deviation (SD) accuracy (ACC) [%]/sensitivity (SN) [%]/specificity (SP) [%]/area under the curve (AUC) for all the networks was 82.53±2.63/72.52±3.63/97.94±0.3/0.99. The software was validated on another 50-image dataset, and its results are comparable with the result of three pathologists in terms of agreement. All networks had similar classification accuracies, which demonstrated that they reached a maximum classification rate on the dataset. The software shows promising results, and with further development can be successfully used on histological images, assisting pathologists’ diagnosis and teaching.
机译:确定基底细胞癌 (BCC) 亚型有时对病理学家来说具有挑战性。深度学习 (DL) 算法因其性能而成为图像分类中的一种新兴方法,并伴随着一个新概念——迁移学习,这意味着替换经过训练的网络的最后一层并针对新任务对其进行重新训练,同时保留导入层的权重。设计了一种基于 DL 卷积的软件,能够对 BCC 的 10 种亚型进行分类。使用了来自三个通用图像分类网络(AlexNet、GoogLeNet 和 ResNet-18)的迁移学习。三名病理学家独立标记了 2249 个斑块。90% 的数据用于训练,10% 用于测试 100 个独立的训练序列。每个结果网络都独立标记了整个数据集。所有网络的平均和标准差 (SD) 准确度 (ACC) [%]/灵敏度 (SN) [%]/特异性 (SP) [%]/曲线下面积 (AUC) 分别为 82.53±2.63/72.52±3.63/97.94±0.3/0.99。该软件在另一个 50 张图像数据集上进行了验证,其结果在一致性方面与三位病理学家的结果相当。所有网络都具有相似的分类精度,这表明它们在数据集上达到了最大分类率。该软件显示出有希望的结果,并且随着进一步开发可以成功地用于组织学图像,协助病理学家的诊断和教学。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号