首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Spectrum Sensing Method Based on Residual Dense Network and Attention
【2h】

Spectrum Sensing Method Based on Residual Dense Network and Attention

机译:基于残差密集网络和注意力的频谱感知方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To address the problems of gradient vanishing and limited feature extraction capability of traditional CNN spectrum sensing methods in deep network structures and to effectively avoid network degradation issues under deep network structures, this paper proposes a collaborative spectrum sensing method based on Residual Dense Network and attention mechanisms. This method involves stacking and normalizing the time-domain information of the signal, constructing a two-dimensional matrix, and mapping it to a grayscale image. The grayscale images are divided into training and testing sets, and the training set is used to train the neural network to extract deep features. Finally, the test set is fed into the well-trained neural network for spectrum sensing. Experimental results show that, under low signal-to-noise ratios, the proposed method demonstrates superior spectral sensing performance compared to traditional collaborative spectrum sensing methods.
机译:针对传统CNN光谱感知方法在深度网络结构中梯度消失和特征提取能力受限的问题,有效避免深度网络结构下的网络退化问题,该文提出了一种基于残差密集网络和注意力机制的协同频谱感知方法。这种方法涉及对信号的时域信息进行堆叠和归一化,构建二维矩阵,并将其映射到灰度图像。灰度图像分为训练集和测试集,训练集用于训练神经网络提取深度特征。最后,将测试集馈送到训练有素的神经网络中,以进行频谱传感。实验结果表明,在低信噪比下,与传统的协同频谱传感方法相比,所提方法表现出优异的光谱传感性能。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号