首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Application of the Semi-Supervised Learning Approach for Pavement Defect Detection
【2h】

Application of the Semi-Supervised Learning Approach for Pavement Defect Detection

机译:半监督学习方法在路面缺陷检测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Road surface quality is essential for driver comfort and safety, making it crucial to monitor pavement conditions and detect defects in real time. However, the diversity of defects and the complexity of ambient conditions make it challenging to develop an effective and robust classification and detection algorithm. In this study, we adopted a semi-supervised learning approach to train ResNet-18 for image feature retrieval and then classification and detection of pavement defects. The resulting feature embedding vectors from image patches were retrieved, concatenated, and randomly sampled to model a multivariate normal distribution based on the only one-class training pavement image dataset. The calibration pavement image dataset was used to determine the defect score threshold based on the receiver operating characteristic curve, with the Mahalanobis distance employed as a metric to evaluate differences between normal and defect pavement images. Finally, a heatmap derived from the defect score map for the testing dataset was overlaid on the original pavement images to provide insight into the network’s decisions and guide measures to improve its performance. The results demonstrate that the model’s classification accuracy improved from 0.868 to 0.887 using the expanded and augmented pavement image data based on the analysis of heatmaps.
机译:路面质量对于驾驶员的舒适性和安全性至关重要,因此监控路面状况和实时检测缺陷至关重要。然而,缺陷的多样性和环境条件的复杂性使得开发有效且稳健的分类和检测算法变得具有挑战性。在这项研究中,我们采用半监督学习方法来训练 ResNet-18 进行图像特征检索,然后对路面缺陷进行分类和检测。从图像补丁中得到的特征嵌入向量被检索、连接和随机采样,以基于唯一的单类训练路面图像数据集对多元正态分布进行建模。标定路面图像数据集用于根据受试者工作特征曲线确定缺陷评分阈值,以 Mahalanobis 距离作为衡量标准来评估正常和缺陷路面图像之间的差异。最后,从测试数据集的缺陷评分图得出的热图叠加在原始路面图像上,以提供对网络决策的洞察并指导提高其性能的措施。结果表明,使用基于热图分析的扩展和增强路面图像数据,模型的分类精度从 0.868 提高到 0.887。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号