首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Monitoring Eastern White Pine Health by Using Field-Measured Foliar Traits and Hyperspectral Data
【2h】

Monitoring Eastern White Pine Health by Using Field-Measured Foliar Traits and Hyperspectral Data

机译:使用现场测量的叶面性状和高光谱数据监测东部白松的健康状况

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Canopy foliar traits serve as crucial indicators of plant health and productivity, forming a vital link between plant conditions and ecosystem dynamics. In this study, the use of hyperspectral data and foliar traits for white pine needle damage (WPND) detection was investigated for the first time. Eastern White Pine (Pinus strobus L., EWP), a species of ecological and economic significance in the Northeastern USA, faces a growing threat from WPND. We used field-measured leaf traits and hyperspectral remote sensing data using parametric and non-parametric methods for WPND detection in the green stage. Results indicated that the random forest (RF) model based solely on remotely sensed spectral vegetation indices (SVIs) demonstrated the highest accuracy of nearly 87% and Kappa coefficient (K) of 0.68 for disease classification into asymptomatic and symptomatic classes. The combination of field-measured traits and remote sensing data indicated an overall accuracy of 77% with a Kappa coefficient (K) of 0.46. These findings contribute valuable insights and highlight the potential of both field-derived foliar and remote sensing data for WPND detection in EWP. With an exponential rise in forest pests and pathogens in recent years, remote sensing techniques can prove beneficial for the timely and accurate detection of disease and improved forest management practices.
机译:冠层叶面性状是植物健康和生产力的重要指标,是植物条件和生态系统动态之间的重要纽带。在本研究中,首次研究了使用高光谱数据和叶面性状进行白松针损伤 (WPND) 检测。东部白松 (Pinus strobus L., EWP) 是美国东北部一种具有重要生态和经济意义的物种,面临着来自 WPND 的日益严重的威胁。我们使用现场测量的叶片性状和高光谱遥感数据,使用参数和非参数方法在绿色阶段进行 WPND 检测。结果表明,仅基于遥感光谱植被指数 (SVI) 的随机森林 (RF) 模型在疾病分类为无症状和有症状类别方面表现出接近 87% 的准确率和 0.68 的 Kappa 系数 (K)。现场测量特征和遥感数据的组合表明,总体准确性为 77%,Kappa 系数 (K) 为 0.46。这些发现提供了有价值的见解,并突出了田间叶面和遥感数据在 EWP 中 WPND 检测的潜力。近年来,随着森林有害生物和病原体呈指数级增长,遥感技术可用于及时准确地检测疾病和改进森林管理实践。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号