首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Near-Surface Air Temperature Estimation Based on an Improved Conditional Generative Adversarial Network
【2h】

Near-Surface Air Temperature Estimation Based on an Improved Conditional Generative Adversarial Network

机译:基于改进条件生成对抗网络的近地表气温估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network’s perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson’s correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation.
机译:针对地面气象观测站分布不均导致的近地表气温数据缺失问题,本文提出了一种基于改进的条件生成对抗网络 (CGAN) 框架的近地表气温估计方法。利用风云气象卫星的全天候覆盖优势,将风云四号甲(FY-4A)卫星遥感数据作为CGAN的条件引导信息,有助于指导和约束近地表气温估计过程。在基于条件生成对抗网络结构的方法所提出的网络模型中,设计了以 U-Net 为骨干的自注意力机制和级联残差块相结合的生成器,提取了隐含特征信息,抑制了风云卫星数据中不相关的信息。此外,构建了多层次和多尺度空间特征融合的判别器,以增强网络对细节和全局结构的感知,从而实现准确的气温估计。实验结果表明,与Attention U-Net、Pix2pix等深度学习模型相比,该方法在均方根误差(RMSE)和皮尔逊相关系数(CC)方面分别显著提高了68.75%和10.53%。这些结果表明,所提出的模型在近地表气温估计方面的卓越性能。

著录项

  • 期刊名称 Sensors (Basel Switzerland)
  • 作者单位
  • 年(卷),期 2024(24),18
  • 年度 2024
  • 页码 5972
  • 总页数 21
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:近地表气温 / 条件生成对抗网络 / 遥感 / 自注意力机制 / 多尺度 / 深度学习;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号