首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Multimodal Image-Based Indoor Localization with Machine Learning—A Systematic Review
【2h】

Multimodal Image-Based Indoor Localization with Machine Learning—A Systematic Review

机译:基于图像的多模态机器学习室内定位——系统评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Outdoor positioning has become a ubiquitous technology, leading to the proliferation of many location-based services such as automotive navigation and asset tracking. Meanwhile, indoor positioning is an emerging technology with many potential applications. Researchers are continuously working towards improving its accuracy, and one general approach to achieve this goal includes using machine learning to combine input data from multiple available sources, such as camera imagery. For this active research area, we conduct a systematic literature review and identify around 40 relevant research papers. We analyze contributions describing indoor positioning methods based on multimodal data, which involves combinations of images with motion sensors, radio interfaces, and LiDARs. The conducted survey allows us to draw conclusions regarding the open research areas and outline the potential future evolution of multimodal indoor positioning.
机译:户外定位已成为一种无处不在的技术,导致许多基于位置的服务激增,例如汽车导航和资产跟踪。同时,室内定位是一项具有许多潜在应用的新兴技术。研究人员一直在努力提高其准确性,实现这一目标的一种通用方法包括使用机器学习来组合来自多个可用来源(例如照相机图像)的输入数据。对于这个活跃的研究领域,我们进行了系统的文献综述,并确定了大约 40 篇相关的研究论文。我们分析了基于多模态数据的描述室内定位方法的贡献,其中包括图像与运动传感器、无线电接口和 LiDAR 的组合。进行的调查使我们能够得出有关开放研究领域的结论,并概述多模态室内定位的未来潜在发展。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号