首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >WoodenCube: An Innovative Dataset for Object Detection in Concealed Industrial Environments
【2h】

WoodenCube: An Innovative Dataset for Object Detection in Concealed Industrial Environments

机译:WoodenCube:用于隐蔽工业环境中对象检测的创新数据集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the rapid advancement of intelligent manufacturing technologies, the operating environments of modern robotic arms are becoming increasingly complex. In addition to the diversity of objects, there is often a high degree of similarity between the foreground and the background. Although traditional RGB-based object-detection models have achieved remarkable success in many fields, they still face the challenge of effectively detecting targets with textures similar to the background. To address this issue, we introduce the WoodenCube dataset, which contains over 5000 images of 10 different types of blocks. All images are densely annotated with object-level categories, bounding boxes, and rotation angles. Additionally, a new evaluation metric, Cube-mAP, is proposed to more accurately assess the detection performance of cube-like objects. In addition, we have developed a simple, yet effective, framework for WoodenCube, termed CS-SKNet, which captures strong texture features in the scene by enlarging the network’s receptive field. The experimental results indicate that our CS-SKNet achieves the best performance on the WoodenCube dataset, as evaluated by the Cube-mAP metric. We further evaluate the CS-SKNet on the challenging DOTAv1.0 dataset, with the consistent enhancement demonstrating its strong generalization capability.
机译:随着智能制造技术的飞速发展,现代机械臂的操作环境变得越来越复杂。除了物体的多样性外,前景和背景之间通常也存在高度的相似性。尽管传统的基于 RGB 的目标检测模型在许多领域都取得了显著的成功,但它们仍然面临着有效检测纹理与背景相似的目标的挑战。为了解决这个问题,我们引入了 WoodenCube 数据集,其中包含 10 种不同类型块的 5000 多张图像。所有图像都使用对象级类别、定界框和旋转角度进行密集批注。此外,提出了一种新的评价指标 Cube-mAP,以更准确地评估立方体状目标的检测性能。此外,我们还为 WoodenCube 开发了一个简单而有效的框架,称为 CS-SKNet,它通过扩大网络的感受野来捕获场景中的强烈纹理特征。实验结果表明,我们的 CS-SKNet 在 WoodenCube 数据集上实现了最佳性能,由 Cube-mAP 指标评估。我们在具有挑战性的 DOTAv1.0 数据集上进一步评估了 CS-SKNet,持续的增强证明了其强大的泛化能力。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号