首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Location Privacy Protection for the Internet of Things with Edge Computing Based on Clustering K-Anonymity
【2h】

Location Privacy Protection for the Internet of Things with Edge Computing Based on Clustering K-Anonymity

机译:基于集群的边缘计算物联网位置隐私保护 K-Anonymity

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the development of the Internet of Things (IoT) and edge computing, more and more devices, such as sensor nodes and intelligent automated guided vehicles (AGVs), can serve as edge devices to provide Location-Based Services (LBS) through the IoT. As the number of applications increases, there is an abundance of sensitive information in the communication process, pushing the focus of privacy protection towards the communication process and edge devices. The challenge lies in the fact that most traditional location privacy protection algorithms are not suited for the IoT with edge computing, as they primarily focus on the security of remote servers. To enhance the capability of location privacy protection, this paper proposes a novel K-anonymity algorithm based on clustering. This novel algorithm incorporates a scheme that flexibly combines real and virtual locations based on the requirements of applications. Simulation results demonstrate that the proposed algorithm significantly improves location privacy protection for the IoT with edge computing. When compared to traditional K-anonymity algorithms, the proposed algorithm further enhances the security of location privacy by expanding the potential region in which the real node may be located, thereby limiting the effectiveness of “narrow-region” attacks.
机译:随着物联网 (IoT) 和边缘计算的发展,越来越多的设备,如传感器节点和智能自动导引车 (AGV),可以作为边缘设备,通过 IoT 提供基于位置的服务 (LBS)。随着应用数量的增加,通信过程中存在大量的敏感信息,将隐私保护的重点推向通信过程和边缘设备。挑战在于,大多数传统的位置隐私保护算法都不适合具有边缘计算的 IoT,因为它们主要关注远程服务器的安全性。为了增强位置隐私保护的能力,该文提出了一种基于聚类的 K-匿名算法。这种新颖的算法结合了一种方案,该方案可根据应用程序的要求灵活地组合真实和虚拟位置。仿真结果表明,所提算法通过边缘计算显著提高了物联网的位置隐私保护。与传统的 K-anonymity 算法相比,所提算法通过扩大真实节点可能所在的潜在区域,进一步增强了位置隐私的安全性,从而限制了“窄域”攻击的有效性。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号