首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Recommendation System for Trigger–Action Programming Rules via Graph Contrastive Learning
【2h】

A Recommendation System for Trigger–Action Programming Rules via Graph Contrastive Learning

机译:一种基于图对比学习的触发器-动作规划规则推荐系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Trigger–action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as “IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed”. As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user–rule bipartite graph. Then, we design a user–user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods.
机译:触发器-操作编程 (TAP) 使用户能够通过创建诸如“如果触发 Device1.TriggerState,则执行 Device2.ActionState”等规则来自动化物联网 (IoT) 设备。随着 IoT 设备数量的增长,设备提供的功能之间的组合空间不断扩大,这使得最终用户手动创建规则变得非常耗时。现有的 TAP 推荐系统提高了规则发现的效率,但面临两个主要问题:它们忽略了用户之间的规则关联,并且无法对用户之间的协作信息进行建模。为了解决这些问题,本文提出了一种名为 GCL4TAP 的基于 TAP 规则的基于图对比学习的推荐系统。在 GCL4TAP 中,我们首先设计了一种名为 DATA2DIV 的数据分区方法,该方法建立跨用户规则关系,并由用户-规则二分图表示。然后,我们设计一个用户-用户图,根据用户拥有的设备的类别和数量对用户之间的相似性进行建模。最后,使用图对比学习技术将这些图转换为用户和规则的低维向量表示。在真实世界智能家居数据集上进行的广泛实验表明,与其他最先进的方法相比,GCL4TAP 的性能更优越。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号