首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Hybrid Optimization Path Planning Method for AGV Based on KGWO
【2h】

Hybrid Optimization Path Planning Method for AGV Based on KGWO

机译:基于KGWO的AGV混合优化路径规划方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To address the path planning problem for automated guided vehicles (AGVs) in challenging and complex industrial environments, a hybrid optimization approach is proposed, integrating a Kalman filter with grey wolf optimization (GWO), as well as incorporating partially matched crossover (PMX) mutation operations and roulette wheel selection. Paths are first optimized using GWO, then refined with Kalman filter corrections every ten iterations. Moreover, roulette wheel selection guides robust parent path selection, while an elite strategy and partially matched crossover (PMX) with mutation generate diverse offspring. Extensive simulations and experiments were carried out under a densely packed goods scenario and complex indoor layout scenario, within a fully automated warehouse environment. The results showed that this hybrid method not only enhanced the various optimization metrics but also ensured more predictable and collision-free navigation paths, particularly in environments with complex obstacles. These improvements lead to increased operational efficiency and safety, highlighting the method’s potential in real-world applications.
机译:为了解决自动导引车 (AGV) 在具有挑战性和复杂的工业环境中的路径规划问题,提出了一种混合优化方法,将卡尔曼滤波器与灰狼优化 (GWO) 集成在一起,并结合部分匹配分频 (PMX) 突变操作和轮盘赌轮盘选择。首先使用 GWO 优化路径,然后每 10 次迭代使用卡尔曼滤波器校正进行优化。此外,轮盘赌轮盘选择指导稳健的亲本路径选择,而精英策略和具有突变的部分匹配交叉 (PMX) 会产生多样化的后代。在完全自动化的仓库环境中,在密集包装的货物场景和复杂的室内布局场景中进行了广泛的模拟和实验。结果表明,这种混合方法不仅增强了各种优化指标,还确保了更可预测和无碰撞的导航路径,尤其是在具有复杂障碍物的环境中。这些改进提高了操作效率和安全性,凸显了该方法在实际应用中的潜力。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号