首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >The Role of Deep Learning and Gait Analysis in Parkinson’s Disease: A Systematic Review
【2h】

The Role of Deep Learning and Gait Analysis in Parkinson’s Disease: A Systematic Review

机译:深度学习和步态分析在帕金森病中的作用:系统评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parkinson’s disease (PD) is the second most common movement disorder in the world. It is characterized by motor and non-motor symptoms that have a profound impact on the independence and quality of life of people affected by the disease, which increases caregivers’ burdens. The use of the quantitative gait data of people with PD and deep learning (DL) approaches based on gait are emerging as increasingly promising methods to support and aid clinical decision making, with the aim of providing a quantitative and objective diagnosis, as well as an additional tool for disease monitoring. This will allow for the early detection of the disease, assessment of progression, and implementation of therapeutic interventions. In this paper, the authors provide a systematic review of emerging DL techniques recently proposed for the analysis of PD by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Scopus, PubMed, and Web of Science databases were searched across an interval of six years (between 2018, when the first article was published, and 2023). A total of 25 articles were included in this review, which reports studies on the movement analysis of PD patients using both wearable and non-wearable sensors. Additionally, these studies employed DL networks for classification, diagnosis, and monitoring purposes. The authors demonstrate that there is a wide employment in the field of PD of convolutional neural networks for analyzing signals from wearable sensors and pose estimation networks for motion analysis from videos. In addition, the authors discuss current difficulties and highlight future solutions for PD monitoring and disease progression.
机译:帕金森病 (PD) 是世界上第二常见的运动障碍。它的特点是运动和非运动症状,对受疾病影响的人的独立性和生活质量有深远影响,这增加了护理人员的负担。使用 PD 患者的定量步态数据和基于步态的深度学习 (DL) 方法正在成为支持和辅助临床决策的越来越有前途的方法,目的是提供定量和客观的诊断,以及疾病监测的附加工具。这将允许早期发现疾病、评估进展和实施治疗干预。在本文中,作者通过使用系统评价和荟萃分析的首选报告项目 (PRISMA) 指南,对最近提出的用于 PD 分析的新兴 DL 技术进行了系统评价。对 Scopus、PubMed 和 Web of Science 数据库进行了六年(从 2018 年第一篇文章发表到 2023 年)的检索。本综述共纳入 25 篇文章,报告了使用可穿戴和非可穿戴传感器对 PD 患者进行运动分析的研究。此外,这些研究采用 DL 网络进行分类、诊断和监测目的。作者证明,卷积神经网络在 PD 领域被广泛使用,用于分析来自可穿戴传感器的信号,以及用于视频运动分析的姿态估计网络。此外,作者讨论了当前的困难,并强调了 PD 监测和疾病进展的未来解决方案。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号