首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Bee Together: Joining Bee Audio Datasets for Hive Extrapolation in AI-Based Monitoring
【2h】

Bee Together: Joining Bee Audio Datasets for Hive Extrapolation in AI-Based Monitoring

机译:Bee Together:在基于 AI 的监控中加入 Bee 音频数据集以进行 Hive 外推

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Beehive health monitoring has gained interest in the study of bees in biology, ecology, and agriculture. As audio sensors are less intrusive, a number of audio datasets (mainly labeled with the presence of a queen in the hive) have appeared in the literature, and interest in their classification has been raised. All studies have exhibited good accuracy, and a few have questioned and revealed that classification cannot be generalized to unseen hives. To increase the number of known hives, a review of open datasets is described, and a merger in the form of the “BeeTogether” dataset on the open Kaggle platform is proposed. This common framework standardizes the data format and features while providing data augmentation techniques and a methodology for measuring hives’ extrapolation properties. A classical classifier is proposed to benchmark the whole dataset, achieving the same good accuracy and poor hive generalization as those found in the literature. Insight into the role of the frequency of the classification of the presence of a queen is provided, and it is shown that this frequency mostly depends on a colony’s belonging. New classifiers inspired by contrastive learning are introduced to circumvent the effect of colony belonging and obtain both good accuracy and hive extrapolation abilities when learning changes in labels. A process for obtaining absolute labels was prototyped on an unsupervised dataset. Solving hive extrapolation with a common open platform and contrastive approach can result in effective applications in agriculture.
机译:蜂箱健康监测在生物学、生态学和农业领域的蜜蜂研究中引起了人们的兴趣。由于音频传感器的侵入性较小,文献中出现了许多音频数据集(主要标有蜂王在蜂巢中的存在),人们对它们的分类产生了兴趣。所有研究都显示出良好的准确性,少数研究质疑并揭示了分类不能推广到看不见的荨麻疹。为了增加已知蜂巢的数量,描述了对开放数据集的回顾,并提议在开放 Kaggle 平台上以 “BeeTogether” 数据集的形式进行合并。这个通用框架标准化了数据格式和功能,同时提供了数据增强技术和测量蜂巢外推属性的方法。提出了一个经典分类器来对整个数据集进行基准测试,实现了与文献中发现的相同的良好准确性和较差的蜂巢泛化。提供了对蜂王存在分类频率的作用的见解,结果表明这种频率主要取决于蜂群的归属。受对比学习启发的新分类器被引入,以规避菌落归属的影响,并在学习标签变化时获得良好的准确性和蜂巢外推能力。在无监督数据集上构建了获取绝对标签的过程原型。使用通用的开放平台和对比方法解决蜂巢外推可以在农业中产生有效的应用。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号