首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Enhanced 2D Hand Pose Estimation for Gloved Medical Applications: A Preliminary Model
【2h】

Enhanced 2D Hand Pose Estimation for Gloved Medical Applications: A Preliminary Model

机译:用于戴手套医疗应用的增强型 2D 手部姿势估计:初步模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

(1) Background: As digital health technology evolves, the role of accurate medical-gloved hand tracking is becoming more important for the assessment and training of practitioners to reduce procedural errors in clinical settings. (2) Method: This study utilized computer vision for hand pose estimation to model skeletal hand movements during in situ aseptic drug compounding procedures. High-definition video cameras recorded hand movements while practitioners wore medical gloves of different colors. Hand poses were manually annotated, and machine learning models were developed and trained using the DeepLabCut interface via an 80/20 training/testing split. (3) Results: The developed model achieved an average root mean square error (RMSE) of 5.89 pixels across the training data set and 10.06 pixels across the test set. When excluding keypoints with a confidence value below 60%, the test set RMSE improved to 7.48 pixels, reflecting high accuracy in hand pose tracking. (4) Conclusions: The developed hand pose estimation model effectively tracks hand movements across both controlled and in situ drug compounding contexts, offering a first-of-its-kind medical glove hand tracking method. This model holds potential for enhancing clinical training and ensuring procedural safety, particularly in tasks requiring high precision such as drug compounding.
机译:(1) 背景:随着数字健康技术的发展,准确的戴医用手套的手部跟踪对于从业者的评估和培训以减少临床环境中的程序错误的作用变得越来越重要。(2) 方法:本研究利用计算机视觉进行手部姿势估计,以模拟原位无菌药物合成过程中的骨骼手部运动。高清摄像机记录了从业者佩戴不同颜色的医用手套时的手部动作。手动注释手部姿势,并使用 DeepLabCut 界面通过 80/20 训练/测试拆分开发和训练机器学习模型。(3) 结果:开发的模型在训练数据集中实现了 5.89 像素的平均均方根误差 (RMSE),在测试集中实现了 10.06 像素。当排除置信度值低于 60% 的关键点时,测试集 RMSE 提高到 7.48 像素,反映了手部姿势跟踪的高精度。(4) 结论:开发的手部姿势估计模型在受控和原位药物复合环境中有效地跟踪手部运动,提供了一种首创的医用手套手部跟踪方法。该模型具有增强临床培训和确保程序安全的潜力,尤其是在需要高精度的任务中,例如药物合成。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号