首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Cross-Country Ski Skating Style Sub-Technique Detection and Skiing Characteristic Analysis on Snow Using High-Precision GNSS
【2h】

Cross-Country Ski Skating Style Sub-Technique Detection and Skiing Characteristic Analysis on Snow Using High-Precision GNSS

机译:基于高精度GNSS的越野滑雪滑冰风格子技术检测及雪地滑雪特性分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A comprehensive analysis of cross-country skiing races is a pivotal step in establishing effective training objectives and tactical strategies. This study aimed to develop a method of classifying sub-techniques and analyzing skiing characteristics during cross-country skiing skating style timed races on snow using high-precision kinematic GNSS devices. The study involved attaching GNSS devices to the heads of two athletes during skating style timed races on cross-country ski courses. These devices provided precise positional data and recorded vertical and horizontal head movements and velocity over ground (VOG). Based on these data, sub-techniques were classified by defining waveform patterns for G2, G3, G4, and G6P (G6 with poling action). The validity of the classification was verified by comparing the GNSS data with video analysis, a process that yielded classification accuracies ranging from 95.0% to 98.8% for G2, G3, G4, and G6P. Notably, G4 emerged as the fastest technique, with sub-technique selection varying among skiers and being influenced by skiing velocity and course inclination. The study’s findings have practical implications for athletes and coaches as they demonstrate that high-precision kinematic GNSS devices can accurately classify sub-techniques and detect skiing characteristics during skating style cross-country skiing races, thereby providing valuable insights for training and strategy development.
机译:对越野滑雪比赛的全面分析是建立有效训练目标和战术策略的关键步骤。本研究旨在开发一种使用高精度运动学 GNSS 设备在越野滑雪滑冰式计时雪地比赛中对子技术进行分类和分析滑雪特性的方法。该研究涉及在越野滑雪道的滑冰式计时比赛中将 GNSS 设备连接到两名运动员的头部。这些设备提供精确的位置数据,并记录垂直和水平头部运动以及对地速度 (VOG)。根据这些数据,通过定义 G2、G3、G4 和 G6P(具有极化动作的 G6)的波形模式对子技术进行分类。通过将 GNSS 数据与视频分析进行比较来验证分类的有效性,该过程产生了 G2、G3、G4 和 G6P 的分类准确率从 95.0% 到 98.8% 不等。值得注意的是,G4 成为最快的技术,子技术选择因滑雪者而异,并受滑雪速度和路线倾斜度的影响。该研究的结果对运动员和教练具有实际意义,因为它们表明高精度运动学 GNSS 设备可以在滑冰风格的越野滑雪比赛中准确分类子技术并检测滑雪特征,从而为训练和策略制定提供有价值的见解。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号