首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >YOLO-BFRV: An Efficient Model for Detecting Printed Circuit Board Defects
【2h】

YOLO-BFRV: An Efficient Model for Detecting Printed Circuit Board Defects

机译:YOLO-BFRV:检测印刷电路板缺陷的有效模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The small area of a printed circuit board (PCB) results in densely distributed defects, leading to a lower detection accuracy, which subsequently impacts the safety and stability of the circuit board. This paper proposes a new YOLO-BFRV network model based on the improved YOLOv8 framework to identify PCB defects more efficiently and accurately. First, a bidirectional feature pyramid network (BIFPN) is introduced to expand the receptive field of each feature level and enrich the semantic information to improve the feature extraction capability. Second, the YOLOv8 backbone network is refined into a lightweight FasterNet network, reducing the computational load while improving the detection accuracy of minor defects. Subsequently, the high-speed re-parameterized detection head (RepHead) reduces inference complexity and boosts the detection speed without compromising accuracy. Finally, the VarifocalLoss is employed to enhance the detection accuracy for densely distributed PCB defects. The experimental results demonstrate that the improved model increases the mAP by 4.12% compared to the benchmark YOLOv8s model, boosts the detection speed by 45.89%, and reduces the GFLOPs by 82.53%, further confirming the superiority of the algorithm presented in this paper.
机译:印刷电路板 (PCB) 的小面积导致缺陷分布密集,导致检测精度降低,进而影响电路板的安全性和稳定性。本文基于改进的 YOLOv8 框架,提出了一种新的 YOLO-BFRV 网络模型,以更高效、更准确地识别 PCB 缺陷。首先,引入双向特征金字塔网络(BIFPN),扩大各特征层次的感受野,丰富语义信息,提高特征提取能力;其次,将 YOLOv8 骨干网络提炼为轻量级的 FasterNet 网络,在降低计算负载的同时提高对微小缺陷的检测精度。随后,高速重新参数化检测头 (RepHead) 降低了推理复杂性,并在不影响准确性的情况下提高了检测速度。最后,采用 VarifocalLoss 来提高密集分布的 PCB 缺陷的检测精度。实验结果表明,与基准 YOLOv8s 模型相比,改进后的模型使 mAP 提高了 4.12%,检测速度提高了 45.89%,GFLOPs 降低了 82.53%,进一步证实了本文提出的算法的优越性。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号