首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Comparison of Information Criteria for Detection of Useful Signals in Noisy Environments
【2h】

Comparison of Information Criteria for Detection of Useful Signals in Noisy Environments

机译:在嘈杂环境中检测有用信号的信息标准比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers the appearance of indications of useful acoustic signals in the signal/noise mixture. Various information characteristics (information entropy, Jensen–Shannon divergence, spectral information divergence and statistical complexity) are investigated in the context of solving this problem. Both time and frequency domains are studied for the calculation of information entropy. The effectiveness of statistical complexity is shown in comparison with other information metrics for different signal-to-noise ratios. Two different approaches for statistical complexity calculations are also compared. In addition, analytical formulas for complexity and disequilibrium are obtained using entropy variation in the case of signal spectral distribution. The connection between the statistical complexity criterion and the Neyman–Pearson approach for hypothesis testing is discussed. The effectiveness of the proposed approach is shown for different types of acoustic signals and noise models, including colored noises, and different signal-to-noise ratios, especially when the estimation of additional noise characteristics is impossible.
机译:本文考虑了信号/噪声混合物中有用声学信号迹象的出现。在解决此问题的背景下,研究了各种信息特征(信息熵、Jensen-Shannon 散度、谱信息散度和统计复杂性)。研究时域和频域以计算信息熵。与不同信噪比的其他信息指标进行比较,显示了统计复杂性的有效性。还比较了统计复杂性计算的两种不同方法。此外,在信号频谱分布的情况下,使用熵变获得复杂性和不平衡的解析公式。讨论了统计复杂性标准与假设检验的 Neyman-Pearson 方法之间的联系。所提出的方法对于不同类型的声学信号和噪声模型(包括有色噪声)和不同的信噪比都表现出了有效性,尤其是在无法估计其他噪声特性的情况下。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号