首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >FusionOpt-Net: A Transformer-Based Compressive Sensing Reconstruction Algorithm
【2h】

FusionOpt-Net: A Transformer-Based Compressive Sensing Reconstruction Algorithm

机译:FusionOpt-Net:一种基于变压器的压缩感知重建算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressive sensing (CS) is a notable technique in signal processing, especially in multimedia, as it allows for simultaneous signal acquisition and dimensionality reduction. Recent advancements in deep learning (DL) have led to the creation of deep unfolding architectures, which overcome the inefficiency and subpar quality of traditional CS reconstruction methods. In this paper, we introduce a novel CS image reconstruction algorithm that leverages the strengths of the fast iterative shrinkage-thresholding algorithm (FISTA) and modern Transformer networks. To enhance computational efficiency, we employ a block-based sampling approach in the sampling module. By mapping FISTA’s iterative process onto neural networks in the reconstruction module, we address the hyperparameter challenges of traditional algorithms, thereby improving reconstruction efficiency. Moreover, the robust feature extraction capabilities of Transformer networks significantly enhance image reconstruction quality. Experimental results show that the FusionOpt-Net model surpasses other advanced methods on various public benchmark datasets.
机译:压缩传感 (CS) 是信号处理中一种值得注意的技术,尤其是在多媒体中,因为它允许同时进行信号采集和降维。深度学习 (DL) 的最新进展导致了深度展开架构的创建,它克服了传统 CS 重建方法的低效率和低质量。在本文中,我们介绍了一种新颖的 CS 图像重建算法,该算法利用了快速迭代收缩阈值算法 (FISTA) 和现代 Transformer 网络的优势。为了提高计算效率,我们在采样模块中采用了基于块的采样方法。通过将 FISTA 的迭代过程映射到重建模块中的神经网络上,我们解决了传统算法的超参数挑战,从而提高了重建效率。此外,Transformer 网络强大的特征提取功能显著提高了图像重建质量。实验结果表明,FusionOpt-Net 模型在各种公共基准数据集上都优于其他高级方法。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号