首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Diagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kinetics
【2h】

Diagnosis of Induced Resistance State in Tomato Using Artificial Neural Network Models Based on Supervised Self-Organizing Maps and Fluorescence Kinetics

机译:使用基于监督自组织图和荧光动力学的人工神经网络模型诊断番茄诱导的耐药状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this study was to develop three supervised self-organizing map (SOM) models for the automatic recognition of a systemic resistance state in plants after application of a resistance inducer. The pathosystem Fusarium oxysporum f. sp. radicis-lycopersici (FORL) + tomato was used. The inorganic, defense inducer, Acibenzolar-S-methyl (benzo-[1,2,3]-thiadiazole-7-carbothioic acid-S-methyl ester, ASM), reported to induce expression of defense genes in tomato, was applied to activate the defense mechanisms in the plant. A handheld fluorometer, FluorPen FP 100-MAX-LM by SCI, was used to assess the fluorescence kinetics response of the induced resistance in tomato plants. To achieve recognition of resistance induction, three models of supervised SOMs, namely SKN, XY-F, and CPANN, were used to classify fluorescence kinetics data, in order to determine the induced resistance condition in tomato plants. To achieve this, a parameterization of fluorescence kinetics curves was developed corresponding to fluorometer variables of the Kautsky Curves. SKN was the best supervised SOM, achieving 97.22% to 100% accuracy. Gene expression data were used to confirm the accuracy of the supervised SOMs.
机译:本研究的目的是开发三种监督自组织图 (SOM) 模型,用于在应用抗性诱导剂后自动识别植物的全身抗性状态。使用病理系统 Fusarium oxysporum f. sp. radicis-lycopersici (FORL) + 番茄。据报道,无机防御诱导剂 Acibenzolar-S-methyl (benzo-[1,2,3]-thiadiazole-7-carbothioic acid-S-methyl ester, ASM) 在番茄中诱导防御基因的表达,用于激活植物中的防御机制。手持式荧光计 FluorPen FP 100-MAX-LM by SCI 用于评估番茄植株诱导抗性的荧光动力学响应。为了实现对抗性诱导的识别,使用 SKN 、 XY-F 和 CPANN 这三种监督 SOM 模型对荧光动力学数据进行分类,以确定番茄植株的诱导抗性条件。为了实现这一目标,开发了对应于 Kautsky 曲线的荧光计变量的荧光动力学曲线的参数化。SKN 是最好的监督 SOM,准确率达到 97.22% 到 100%。基因表达数据用于确认监督 SOMs 的准确性。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号