首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Method for Extracting High-Resolution Building Height Information in Rural Areas Using GF-7 Data
【2h】

A Method for Extracting High-Resolution Building Height Information in Rural Areas Using GF-7 Data

机译:一种利用 GF-7 数据提取农村地区高分辨率建筑高度信息的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Building height is important information in disaster management and damage assessment. It is also a key parameter in studies such as population modeling and urbanization. Relatively few studies have been conducted on extracting building height in rural areas using imagery from China’s Gaofen-7 satellite (GF-7). In this study, we developed a method combining photogrammetry and deep learning to extract building height using GF-7 data in the rural area of Pingquan in northern China. The deep learning model DELaMa was proposed for digital surface model (DSM) editing based on the Large Mask Inpainting (LaMa) architecture. It not only preserves topographic details but also reasonably predicts the topography inside the building mask. The percentile value of the normalized digital surface model (nDSM) in the building footprint was taken as the building height. The extracted building heights in the study area are highly consistent with the reference building heights measured from the ICESat-2 LiDAR point cloud, with an R2 of 0.83, an MAE of 1.81 m and an RMSE of 2.13 m for all validation buildings. Overall, the proposed method in this paper helps to promote the use of satellite data in large-scale building height surveys, especially in rural areas.
机译:建筑物高度是灾害管理和损失评估中的重要信息。它也是人口建模和城市化等研究中的关键参数。使用中国高分七号卫星 (GF-7) 的图像提取农村地区建筑物高度的研究相对较少。在这项研究中,我们开发了一种结合摄影测量和深度学习的方法,利用 GF-7 数据提取中国北方平泉农村地区的建筑物高度。深度学习模型 DELaMa 被提出用于基于大掩码修复 (LaMa) 架构的数字表面模型 (DSM) 编辑。它不仅可以保留地形细节,还可以合理地预测建筑物掩膜内的地形。建筑物占地面积中归一化数字表面模型 (nDSM) 的百分位值作为建筑物高度。研究区域提取的建筑物高度与 ICESat-2 LiDAR 点云测得的参考建筑物高度高度高度一致,所有验证建筑物的 R2 为 0.83,MAE 为 1.81 m,RMSE 为 2.13 m。总体而言,本文提出的方法有助于促进卫星数据在大规模建筑高度调查中的应用,尤其是在农村地区。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号