首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Wide-Range TCSC Based ADN in Mountainous Areas Considering Hydropower-Photovoltaic-ESS Complementarity
【2h】

A Wide-Range TCSC Based ADN in Mountainous Areas Considering Hydropower-Photovoltaic-ESS Complementarity

机译:考虑水电-光伏-储能互补性的山区基于TCSC的宽范围己二氮腈网

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to the radial network structures, small cross-sectional lines, and light loads characteristic of existing AC distribution networks in mountainous areas, the development of active distribution networks (ADNs) in these regions has revealed significant issues with integrating distributed generation (DGs) and consuming renewable energy. Focusing on this issue, this paper proposes a wide-range thyristor-controlled series compensation (TCSC)-based ADN and presents a deep reinforcement learning (DRL)-based optimal operation strategy. This strategy takes into account the complementarity of hydropower, photovoltaic (PV) systems, and energy storage systems (ESSs) to enhance the capacity for consuming renewable energy. In the proposed ADN, a wide-range TCSC connects the sub-networks where PV and hydropower systems are located, with ESSs configured for each renewable energy generation. The designed wide-range TCSC allows for power reversal and improves power delivery efficiency, providing conditions for the optimization operation. The optimal operation issue is formulated as a Markov decision process (MDP) with continuous action space and solved using the twin delayed deep deterministic policy gradient (TD3) algorithm. The optimal objective is to maximize the consumption of renewable energy sources (RESs) and minimize line losses by coordinating the charging/discharging of ESSs with the operation mode of the TCSC. The simulation results demonstrate the effectiveness of the proposed method.
机译:由于山区现有交流配电网络具有径向网络结构、小横截面线和轻负载的特点,这些地区主动配电网络 (ADN) 的发展暴露了整合分布式发电 (DG) 和消耗可再生能源的重大问题。针对这个问题,该文提出了一种基于宽范围晶闸管控制串联补偿 (TCSC) 的 ADN,并提出了一种基于深度强化学习 (DRL) 的最优操作策略。该战略考虑了水电、光伏 (PV) 系统和储能系统 (ESS) 的互补性,以提高可再生能源的消费能力。在拟议的 ADN 中,一个宽范围的 TCSC 连接了光伏和水电系统所在的子网络,并为每根可再生能源发电配置了 ESS。设计的宽范围 TCSC 允许功率反转并提高供电效率,为优化运行提供了条件。将最优操作问题表述为具有连续动作空间的马尔可夫决策过程 (MDP),并使用双延迟深度确定性策略梯度 (TD3) 算法求解。最佳目标是通过将 ESS 的充电/放电与 TCSC 的运行模式协调,最大限度地提高可再生能源 (RES) 的消耗并最大限度地减少线路损耗。仿真结果验证了所提方法的有效性。

著录项

  • 期刊名称 Sensors (Basel Switzerland)
  • 作者单位
  • 年(卷),期 2024(24),18
  • 年度 2024
  • 页码 6028
  • 总页数 18
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:TCSC 、 主动配电网 深度强化学习 优化运营;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号