首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Novel Multi-Classification Dynamic Detection Model for Android Malware Based on Improved Zebra Optimization Algorithm and LightGBM
【2h】

Novel Multi-Classification Dynamic Detection Model for Android Malware Based on Improved Zebra Optimization Algorithm and LightGBM

机译:基于改进斑马优化算法和 LightGBM 的新型 Android 恶意软件多分类动态检测模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the increasing popularity of Android smartphones, malware targeting the Android platform is showing explosive growth. Currently, mainstream detection methods use static analysis methods to extract features of the software and apply machine learning algorithms for detection. However, static analysis methods can be less effective when faced with Android malware that employs sophisticated obfuscation techniques such as altering code structure. In order to effectively detect Android malware and improve the detection accuracy, this paper proposes a dynamic detection model for Android malware based on the combination of an Improved Zebra Optimization Algorithm (IZOA) and Light Gradient Boosting Machine (LightGBM) model, called IZOA-LightGBM. By introducing elite opposition-based learning and firefly perturbation strategies, IZOA enhances the convergence speed and search capability of the traditional zebra optimization algorithm. Then, the IZOA is employed to optimize the LightGBM model hyperparameters for the dynamic detection of Android malware multi-classification. The results from experiments indicate that the overall accuracy of the proposed IZOA-LightGBM model on the CICMalDroid-2020, CCCS-CIC-AndMal-2020, and CIC-AAGM-2017 datasets is 99.75%, 98.86%, and 97.95%, respectively, which are higher than the other comparative models.
机译:随着 Android 智能手机的日益普及,针对 Android 平台的恶意软件呈爆炸式增长。目前,主流检测方法使用静态分析方法来提取软件的特征,并应用机器学习算法进行检测。但是,当面对采用复杂混淆技术(例如更改代码结构)的 Android 恶意软件时,静态分析方法可能不太有效。为了有效检测 Android 恶意软件并提高检测准确率,本文提出了一种基于改进斑马优化算法 (IZOA) 和光梯度提升机 (LightGBM) 模型相结合的 Android 恶意软件动态检测模型,称为 IZOA-LightGBM。通过引入精英基于反对的学习和萤火虫扰动策略,IZOA 增强了传统斑马优化算法的收敛速度和搜索能力。然后,采用 IZOA 优化 LightGBM 模型超参数,用于 Android 恶意软件多分类的动态检测。实验结果表明,所提出的IZOA-LightGBM模型在CICMalDroid-2020、CCCS-CIC-AndMal-2020和CIC-AAGM-2017数据集上的总体准确率分别为99.75%、98.86%和97.95%,高于其他对比模型。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号