首页> 美国卫生研究院文献>The ISME Journal >Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance
【2h】

Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance

机译:全基因组分析细菌中的赖氨酸分解代谢揭示了与渗透胁迫抗性的新联系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lysine is catabolized via the saccharopine pathway in plants and mammals. In this pathway, lysine is converted to α-aminoadipic-δ-semialdehyde (AASA) by lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH); thereafter, AASA is converted to aminoadipic acid (AAA) by α-aminoadipic-δ-semialdehyde dehydrogenase (AASADH). Here, we investigate the occurrence, genomic organization and functional role of lysine catabolic pathways among prokaryotes. Surprisingly, only 27 species of the 1478 analyzed contain the lkr and sdh genes, whereas 323 species contain aasadh orthologs. A sdh-related gene, identified in 159 organisms, was frequently found contiguously to an aasadh gene. This gene, annotated as lysine dehydrogenase (lysdh), encodes LYSDH an enzyme that directly converts lysine to AASA. Pipecolate oxidase (PIPOX) and lysine-6-aminotransferase (LAT), that converts lysine to AASA, were also found associated with aasadh. Interestingly, many lysdh–aasadh–containing organisms live under hyperosmotic stress. To test the role of the lysine-to-AASA pathways in the bacterial stress response, we subjected Silicibacter pomeroyi to salt stress. All but lkr, sdh, lysdh and aasadh were upregulated under salt stress conditions. In addition, lysine-supplemented culture medium increased the growth rate of S. pomeroyi under high-salt conditions and induced high-level expression of the lysdh–aasadh operon. Finally, transformation of Escherichia coli with the S. pomeroyi lysdh–aasadh operon resulted in increased salt tolerance. The transformed E. coli accumulated high levels of the compatible solute pipecolate, which may account for the salt resistance. These findings suggest that the lysine-to-AASA pathways identified in this work may have a broad evolutionary importance in osmotic stress resistance.
机译:赖氨酸通过糖精途径在植物和哺乳动物中分解代谢。在该途径中,赖氨酸-酮戊二酸还原酶/糖碱脱氢酶(LKR / SDH)将赖氨酸转化为α-氨基己二酸-δ-半醛(AASA);之后,AASA通过α-氨基己二酸-δ-半醛脱氢酶(AASADH)转化为氨基己二酸(AAA)。在这里,我们调查在原核生物之间赖氨酸分解代谢途径的发生,基因组组织和功能作用。出乎意料的是,在分析的1478​​个物种中,只有27个物种包含lkr和sdh基因,而323个物种包含aasadh直系同源物。经常在aasadh基因附近发现与sdh相关的基因,该基因已在159种生物中鉴定出。该基因被称为赖氨酸脱氢酶(lysdh),编码LYSDH,该酶将赖氨酸直接转化为AASA。也发现将赖氨酸转化为AASA的Pipecolate氧化酶(PIPOX)和赖氨酸6-氨基转移酶(LAT)与aasadh相关。有趣的是,许多含有lysdh-aasadh的生物都生活在高渗胁迫下。为了测试赖氨酸-AASA途径在细菌应激反应中的作用,我们对Somericbacter pomeroyi进行了盐胁迫处理。在盐胁迫条件下,除lkr,sdh,lysdh和aasadh以外的所有植物均上调。此外,在高盐条件下,添加赖氨酸的培养基可提高沙门氏菌的生长速度,并诱导lysdh-aasadh操纵子的高水平表达。最后,用S. pomeroyi lysdh-aasadh操纵子转化大肠杆菌会提高耐盐性。转化的大肠杆菌积累了高水平的相容性溶质哌酸酯,这可能是耐盐性的原因。这些发现表明,这项工作中确定的赖氨酸-AASA途径在渗透胁迫抗性中可能具有广泛的进化重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号