首页> 美国卫生研究院文献>iScience >Recall Responses from Brain-Resident Memory CD8+ T Cells (bTRM) Induce Reactive Gliosis
【2h】

Recall Responses from Brain-Resident Memory CD8+ T Cells (bTRM) Induce Reactive Gliosis

机译:回忆来自大脑常驻记忆CD8 + T细胞(bTRM)的反应诱发反应性胶质变性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionIt is currently unknown why HIV-associated neurocognitive disorders (HAND) persist despite effective viral suppression to undetectable levels in most combination antiretroviral therapy (cART)-treated individuals. Although patients on successful cART show sustained viral suppression, as indicated by routine plasma monitoring and occasional cerebrospinal fluid (CSF) monitoring, “blips” indicative of transient HIV replication are often detected with more frequent testing, as reviewed in ). A number of studies link persistent immune activation, neuroinflammation, and CSF viral escape in cART-treated individuals to increased disease progression, as well as an increased risk for HAND (, , ). Interruption of cART has been associated with CSF viral escape and neuronal injury, as well as with worsened neurocognitive performance (, , ). Although fulminant encephalitis is now uncommon in HIV-infected patients, biomarkers of continuing neuroinflammation in the CSF and brain, as well as neuronal injury, are frequently detected in virally suppressed individuals. Still, partial protection against HAND by successful cART does indicate some direct link to HIV replication. Persistent HIV infection and reactivation from central nervous system (CNS) reservoirs, even if intermittent, appears likely in cART-experienced patients (). Brain infection may also be re-seeded through blood or through recently described meningeal lymphatics (). In addition, evidence for the involvement of CD8+ T cells, especially through production of interferon (IFN)-γ, in CNS pathogenesis in patients who received cART continues to mount (). Therefore, CSF viral escape and the associated production of viral antigen (Ag), as well as its generation of subsequent adaptive, recall responses by brain-resident CD8+ T cells to control viral spread, may induce neuroinflammation that drives bystander CNS injury.Resolution of adaptive immune responses and generation of immunological memory is an essential process to confer long-term protective immunity, particularly in tissues like the brain. The presence of CD8+ T cells in post-mortem brains of HIV-infected patients, as well as in the brains of animal models, is well documented (, , , , , href="#bib35" rid="bib35" class=" bibr popnode">Marcondes et al., 2007, href="#bib53" rid="bib53" class=" bibr popnode">Schrier et al., 2015). Recent studies have demonstrated that following clearance of many acute viral infections, CD8+ T lymphocytes generate a population of long-lived, non-recirculating tissue-resident memory T cells (TRM) in non-lymphoid tissue, and it is becoming increasingly clear that these TRM play critical roles in controlling re-encountered pathogens and accelerating the process of clearance (href="#bib32" rid="bib32" class=" bibr popnode">Mackay et al., 2013, href="#bib38" rid="bib38" class=" bibr popnode">Masopust et al., 2010, href="#bib46" rid="bib46" class=" bibr popnode">Park and Kupper, 2015, href="#bib52" rid="bib52" class=" bibr popnode">Schenkel and Masopust, 2014). It is well established that during acute viral infection, most pathogens are rapidly cleared by the generation of a large number of short-lived effector T cells (SLEC), which die via apoptosis once cognate Ag is cleared. Simultaneously, the T cell response is also triggered to generate a defined subset identified as memory precursor effector cells (MPEC). These MPEC begin to develop into a TRM phenotype shortly after infection. Recent work by several groups provides evidence that there is a clear distinction between terminal effector and memory cells based on heterogeneity in expression of killer cell lectin-like receptor G1 (KLRG1) (href="#bib2" rid="bib2" class=" bibr popnode">Bengsch et al., 2007, href="#bib23" rid="bib23" class=" bibr popnode">Kaech and Wherry, 2007, href="#bib69" rid="bib69" class=" bibr popnode">Yuzefpolskiy et al., 2015).We have recently characterized brain-infiltrating T cells that persist within the CNS after acute murine cytomegalovirus (MCMV) infection (href="#bib48" rid="bib48" class=" bibr popnode">Prasad et al., 2015). We have also shown that these brain CD8+ T cell populations shift from SLEC that clear infection to MPEC that protect against viral reactivation and re-challenge. The shift of prominent SLEC populations to MPEC populations is concomitant with transition from acute through chronic phases of infection. TRM are characterized by their non-recirculating, resident nature in tissues. It has been well reported that TRM often express αEβ7 integrin, and integrin αE, otherwise known as CD103, is used as a marker of particular types of TRM. High expression of CD103 and CD69 is a common feature of resident memory cells observed in epithelial tissue, as well as a phenotypic signature of bTRM (href="#bib59" rid="bib59" class=" bibr popnode">Steinbach et al., 2016, href="#bib64" rid="bib64" class=" bibr popnode">Wakim et al., 2010, href="#bib65" rid="bib65" class=" bibr popnode">Watanabe et al., 2015, href="#bib67" rid="bib67" class=" bibr popnode">Woon et al., 2016). In contrast, effector and memory cells in circulation appear to lack expression of both CD103 and CD69 (href="#bib17" rid="bib17" class=" bibr popnode">Gebhardt and Mackay, 2012, href="#bib37" rid="bib37" class=" bibr popnode">Masopust et al., 2006). It has also been shown that CD69 expression is required for optimal formation of TRM following herpes simplex virus infection in tissues such as the skin and dorsal root ganglia (href="#bib32" rid="bib32" class=" bibr popnode">Mackay et al., 2013, href="#bib34" rid="bib34" class=" bibr popnode">Mackay et al., 2015b). In addition to CD103+ and CD69+ markers, TRM are often reported to express CD49a. CD49a constitutes the α subunit of α1β1 integrin receptor, also known as very late Ag 1 (VLA-1) (href="#bib13" rid="bib13" class=" bibr popnode">Cheuk et al., 2017). Experiments using skin, lung, and gut show differential expression of CCR7, as well as CXCR3, which define migration properties of T cells (href="#bib43" rid="bib43" class=" bibr popnode">Mueller and Mackay, 2016, href="#bib55" rid="bib55" class=" bibr popnode">Slutter et al., 2013). Although imperfect, expression of these markers is frequently used to identify TRM populations when stringent migration studies, such as parabiosis, are not feasible, reviewed in href="#bib52" rid="bib52" class=" bibr popnode">Schenkel and Masopust (2014). Finally, protection of the CNS from reinfection by lymphocytic choriomeningitis virus (LCMV) was found to depend on these brain-resident memory CD8+ T cells (bTRM) (href="#bib59" rid="bib59" class=" bibr popnode">Steinbach et al., 2016).Given their significance in antiviral defense, surprisingly little is known about this brain-resident memory cell population in the context of HAND. Ag-specific lymphocytes residing within tissues are uniquely poised to respond rapidly to their cognate Ag, and TRM functions extend far beyond cytotoxic T lymphocyte activity. In several infection models, it is clear that recall responses of TRM to small amounts of Ag result in production of IFN-γ (href="#bib40" rid="bib40" class=" bibr popnode">McMaster et al., 2015, href="#bib59" rid="bib59" class=" bibr popnode">Steinbach et al., 2016). Furthermore, this IFN-γ production results in IFN-stimulated gene expression in surrounding cells, thereby amplifying the activation of a small number of adaptive immune cells into an organ-wide antiviral response (href="#bib1" rid="bib1" class=" bibr popnode">Ariotti et al., 2014). Similarly, activation of adaptive immune responses from TRM has been shown to stimulate protective, innate responses in the LCMV model (href="#bib52" rid="bib52" class=" bibr popnode">Schenkel and Masopust, 2014). From these studies, it is clear that a small number of TRM accelerate pathogen control in the event of reinfection or reactivation of latent infection by instructing tissue-resident innate immune cells, such as microglia. Yet there have been no definitive experiments to evaluate neurotoxic consequences of anti-HIV recall immune response by bTRM in driving tissue-wide activation of brain-resident microglial cells, its associated neurotoxicity, and development of subsequent neurocognitive impairment. Here, we demonstrate that HIV-specific TRM are elicited within brain using a heterologous prime-CNS boost strategy. We show that Ag-specific CD8+ bTRM are established, which recognize an immunodominant viral epitope. Subsequent recall responses to specific epitope peptides resulted in striking upregulation of major histocompatibility complex (MHC) class II (MHC-II) and programmed death-ligand 1 (PD-L1) on microglial cells, indicative of neuroinflammation. Taken together, data presented here show that recall responses from bTRM can induce reactive gliosis.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介尽管有效的病毒抑制作用,为何与艾滋病相关的神经认知障碍(HAND)仍然存在,目前尚不清楚在大多数联合抗逆转录病毒疗法(cART)治疗的个体中达到不可检测的水平。尽管成功进行cART的患者表现出持续的病毒抑制作用,如常规血浆监测和偶发性脑脊液(CSF)监测所表明的那样,但通常会通过更频繁的检测发现指示短暂HIV复制的“斑点”,如所述。许多研究将cART治疗的个体中持续的免疫激活,神经炎症和CSF病毒逃逸与疾病进展增加以及HAND(,)风险增加联系起来。 cART的中断与CSF病毒逃逸,神经元损伤以及神经认知功能恶化有关。尽管在HIV感染的患者中不常见暴发性脑炎,但在病毒抑制的个体中经常检测到CSF和大脑中持续性神经炎症以及神经元损伤的生物标志物。尽管如此,成功的cART对HAND的部分保护确实表明与HIV复制有直接联系。经历过cART的患者,即使是间歇性感染,也可能会持续感染HIV和从中枢神经系统(CNS)储库中重新激活()。脑部感染也可能通过血液或最近描述的脑膜淋巴管炎重新播种。此外,接受cART的患者中枢神经系统发病机制中CD8 + T细胞参与,特别是通过干扰素(IFN)-γ参与的证据继续增多()。因此,脑脊液病毒逃逸和病毒抗原(Ag)的相关产生,以及随后由脑驻留CD8 + T细胞控制病毒扩散的适应性,回忆性应答的产生,可能诱发神经炎症。适应性免疫反应的解决和免疫记忆的产生是赋予长期保护性免疫的重要过程,尤其是在大脑等组织中。 HIV感染患者的验尸后大脑以及动物模型的大脑中CD8 + T细胞的存在已得到充分记录(,,,,,,href =“# bib35“ rid =” bib35“ class =” bibr popnode“> Marcondes等,2007 ,href="#bib53" rid="bib53" class=" bibr popnode"> Schrier等, 2015 )。最近的研究表明,清除许多急性病毒感染后,CD8 + T淋巴细胞在非淋巴组织中产生了长寿命的非循环组织驻留记忆T细胞(TRM),并且越来越清楚的是,这些TRM在控制再次遇到的病原体和加速清除过程中起着至关重要的作用(href="#bib32" rid="bib32" class=" bibr popnode"> Mackay等人, 2013 ,href="#bib38" rid="bib38" class=" bibr popnode"> Masopust等人,2010 ,href =“#bib46” rid =“ bib46” class =“ bibr popnode”> Park and Kupper,2015 ,href="#bib52" rid="bib52" class=" bibr popnode"> Schenkel and Masopust,2014 )。众所周知,在急性病毒感染期间,大多数病原体会通过大量短寿命效应T细胞(SLEC)的产生而被快速清除,这些效应T细胞一旦清除相关的Ag后就会通过凋亡而死亡。同时,T细胞反应也被触发以生成一个确定的子集,该子集被识别为记忆前体效应细胞(MPEC)。这些MPEC在感染后不久开始发展成TRM表型。几个小组的最新研究提供了证据,表明杀伤细胞凝集素样受体G1(KLRG1)(href =“#bib2” rid =“ bib2”类=“ bibr popnode”> Bengsch等人,2007 ,href="#bib23" rid="bib23" class=" bibr popnode">凯奇和惠瑞,2007 ,href =“#bib69” rid =“ bib69” class =“ bibr popnode”> Yuzefpolskiy et al。,2015 )。我们最近对急性鼠巨细胞病毒(MCMV)后脑浸润的T细胞进行了表征。感染(href="#bib48" rid="bib48" class=" bibr popnode">普拉萨德等人,2015 )。我们还表明,这些脑CD8 + T细胞群体从清除感染的SLEC转移到了防止病毒再激活和再攻击的MPEC。突出的SLEC人群向MPEC人群的转移伴随着从急性到慢性感染阶段的转变。 TRM的特点是不可循环,自然存在于组织中。众所周知,TRM经常表达αEβ7整联蛋白,整联蛋白αE(也称为CD103)被用作特定类型TRM的标记。 CD103和CD69的高表达是在上皮组织中观察到的常驻记忆细胞的共同特征,也是bTRM的表型特征(href="#bib59" rid="bib59" class=" bibr popnode"> Steinbach等等人,2016 ,href="#bib64" rid="bib64" class=" bibr popnode"> Wakim等人,2010 ,href =“#bib65” rid = “ bib65” class =“ bibr popnode”>渡边等人,2015 ,href="#bib67" rid="bib67" class=" bibr popnode"> Woon等人,2016 )。相反,循环中的效应细胞和记忆细胞似乎缺乏CD103和CD69的表达(href="#bib17" rid="bib17" class=" bibr popnode"> Gebhardt and Mackay,2012 ,< a href =“#bib37” rid =“ bib37” class =“ bibr popnode”> Masopust等人,2006 )。还显示出,CD69表达是单纯疱疹病毒感染后在皮肤和背根神经节等组织中TRM最佳形成所必需的(href =“#bib32” rid =“ bib32” class =“ bibr popnode” > Mackay等,2013 ,href="#bib34" rid="bib34" class=" bibr popnode"> Mackay等,2015b )。除了CD103 + 和CD69 + 标记外,TRM还经常表达CD49a。 CD49a构成α1β1整联蛋白受体的α亚基,也被称为非常晚的Ag 1(VLA-1)(href="#bib13" rid="bib13" class=" bibr popnode"> Cheuk et al。,2017 < / a>)。使用皮肤,肺脏和肠道进行的实验显示了CCR7和CXCR3的差异表达,它们定义了T细胞的迁移特性(href="#bib43" rid="bib43" class=" bibr popnode"> Mueller和Mackay ,2016 ,href="#bib55" rid="bib55" class=" bibr popnode"> Slutter等,2013 )。尽管不完善,但当严格的迁移研究(如共生菌)不可行时,经常使用这些标记物的表达来鉴定TRM人群,参见href="#bib52" rid="bib52" class=" bibr popnode"> Schenkel和Masopust(2014 )。最后,发现保护CNS免受淋巴细胞性脉络膜脑膜炎病毒(LCMV)的再感染取决于这些脑驻留记忆CD8 + T细胞(bTRM)(href =“#bib59” rid = “ bib59” class =“ bibr popnode”> Steinbach等人,2016 )。鉴于它们在抗病毒防御中的重要性,令人惊讶的是,在HAND的背景下,这种大脑驻留的记忆细胞数量知之甚少。驻留在组织中的Ag特异性淋巴细胞具有独特的优势,可以对它们的同源Ag快速反应,TRM的功能远远超出了细胞毒性T淋巴细胞的活性。在几种感染模型中,很明显TRM对少量Ag的召回反应会导致IFN-γ的产生(href="#bib40" rid="bib40" class=" bibr popnode"> McMaster等。 ,2015 ,href="#bib59" rid="bib59" class=" bibr popnode"> Steinbach等人,2016 )。此外,这种IFN-γ的产生导致周围细胞中IFN刺激的基因表达,从而将少数适应性免疫细胞的激活放大为整个器官的抗病毒应答(href =“#bib1” rid =“ bib1 “ class =” bibr popnode“> Ariotti等人,2014 )。同样,在LCMV模型中,TRM适应性免疫应答的激活已显示出刺激性的保护性先天应答(href="#bib52" rid="bib52" class=" bibr popnode"> Schenkel和Masopust,2014年)。从这些研究中,很明显,通过指示组织驻留的先天免疫细胞(例如小胶质细胞),在再感染或潜伏感染重新激活的情况下,少量TRM加快了病原体的控制。然而,还没有确定的实验来评估bTRM抗HIV召回免疫反应在驱动脑内小胶质细胞的全组织激活,其相关的神经毒性以及随后的神经认知损害​​发展中的神经毒性后果。在这里,我们证明了使用异源prim-CNS促进策略在脑内诱发HIV特异性的T RM 。我们表明建立了特定于银的CD8 + bT RM ,它可以识别具有免疫优势的病毒表位。随后对特定表位肽的召回反应导致小胶质细胞上主要的组织相容性复合物(MHC)II类(MHC-II)和程序性死亡配体1(PD-L1)显着上调,表明存在神经炎症。两者合计,此处提供的数据表明,来自bT RM 的回忆反应可诱发反应性胶质增生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号