首页> 美国卫生研究院文献>iScience >ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons
【2h】

ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons

机译:ALS连锁的SOD1突变体增强了成年运动神经元的神经突增生和分支。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAmyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurodegenerative disorder in which there is selective loss of motor neurons in the cerebral cortex, brainstem, and spinal cord (). Approximately 90% of ALS cases are sporadic with unknown etiology; the remaining 10% are inherited and known as familial ALS (fALS), of which over 20% have mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD1) (). To date, over 155 different mutations have been identified in SOD1 either in isolated cases of ALS or more commonly in patients from families showing autosomal dominant patterns of inheritance (, ). ALS-linked SOD1 mutations are thought to induce a toxic gain of function in the protein, which becomes prone to misfolding and subsequent aggregation (, ). However, expression of mutant SOD1 can affect a number of cellular processes, causing ER distress, mitochondrial dysfunction, excitotoxicity, defects in axonal transport, and inhibition of the proteasome (). Despite being the first gene identified with mutations that cause fALS () and providing the basis of the first ALS animal model (), there is still no consensus about how mutant SOD1 specifically alters motor neuron physiology.Although most studies have focused on the cellular mechanisms and genes that induce motor neuron death in ALS, less is known about the neurons that do survive, including their ability to resist stress-induced cell death and to compensate for dying motor neurons. Not all motor neurons are equally susceptible to cell death during ALS disease progression. ALS mostly targets motor neurons required for voluntary movement, whereas motor neurons of the autonomic system are less sensitive (). There is also a gradient of vulnerability among spinal motor neurons, whereby faster motor units become affected before slower muscle types (). Motor neurons that are less ALS susceptible can compensate for the cells that initially die by establishing new connections with the motor endplate, although many of these will eventually succumb to the disease (). This selective neuronal vulnerability is present in both sporadic ALS and familial ALS and is also recapitulated in rodent models, such as the SOD1G93A mouse (, ).Most of our current knowledge about surviving spinal motor neurons in ALS mouse models has largely been generated by gene expression profiling of tissue and cells (, href="#bib6" rid="bib6" class=" bibr popnode">Brockington et al., 2013, href="#bib11" rid="bib11" class=" bibr popnode">de Oliveira et al., 2013, href="#bib12" rid="bib12" class=" bibr popnode">Ferraiuolo et al., 2007, href="#bib30" rid="bib30" class=" bibr popnode">Lobsiger et al., 2007, href="#bib47" rid="bib47" class=" bibr popnode">Saxena et al., 2009). However, these studies provide just a single snapshot of the motor neuron's biology and only allow for inferences to be made about how changes in gene expression alter motor neuron physiology, allow them to resist degeneration, or compensate for dying neurons by forming new motor endplate attachments. In the current study, we sought to functionally characterize ALS-resistant motor neurons by culturing them in vitro, where we would be able to directly assess dynamic cellular properties such as outgrowth, branching, and regulation of the cytoskeleton.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介肌萎缩性侧索硬化症(ALS)是一种致命的成人发作性神经退行性疾病,其中是大脑皮质,脑干和脊髓中运动神经元的选择性损失。约有90%的ALS病例是零星的,病因不明。其余的10%是遗传的,称为家族性ALS(fALS),其中超过20%的Cu / Zn超氧化物歧化酶1(SOD1)编码基因中有突变。迄今为止,在孤立的ALS病例中或更常见于显示常染色体显性遗传继承型家族的患者中,SOD1中已鉴定出155种以上的不同突变。人们认为,与ALS相关的SOD1突变会诱导该蛋白功能性的毒性增加,从而容易出现错误折叠和随后的聚集()。但是,突变型SOD1的表达会影响许多细胞过程,导致ER窘迫,线粒体功能障碍,兴奋性毒性,轴突运输缺陷和蛋白酶体的抑制()。尽管是第一个被鉴定为引起fALS突变的基因,并提供了第一个ALS动物模型的基础,但关于突变SOD1如何特异性改变运动神经元生理学的研究尚无共识,尽管大多数研究都集中在细胞机制上以及在ALS中诱导运动神经元死亡的基因,对于存活下来的神经元知之甚少,包括它们抗应激诱导的细胞死亡和补偿垂死的运动神经元的能力。在ALS疾病进展期间,并非所有运动神经元都同样容易受到细胞死亡的影响。 ALS主要针对自愿运动所需的运动神经元,而自主系统的运动神经元则较不敏感()。脊柱运动神经元之间也存在脆弱性梯度,因此较快的运动单位先于较慢的肌肉类型受到影响()。 ALS较不敏感的运动神经元可以通过与运动终板建立新的连接来补偿最初死亡的细胞,尽管其中许多最终都将死于该疾病。这种选择性的神经元脆弱性同时存在于散发性ALS和家族性ALS中,并且在啮齿动物模型中也得到了概括,例如SOD1 G93A 小鼠(,)。我们目前有关在ALS中存活的脊髓运动神经元的知识最多小鼠模型很大程度上是由组织和细胞的基因表达谱分析产生的,(href="#bib6" rid="bib6" class=" bibr popnode"> Brockington等,2013 ,href =“#bib11” rid =“ bib11” class =“ bibr popnode”> de Oliveira等,2013 ,href="#bib12" rid="bib12" class=" bibr popnode">费拉尤奥罗et al。,2007 ,href="#bib30" rid="bib30" class=" bibr popnode"> Lobsiger et al。,2007 ,href =“#bib47” rid =“ bib47” class =“ bibr popnode”> Saxena等人,2009 )。但是,这些研究仅提供了运动神经元生物学的一个快照,并且仅允许推断基因表达的变化如何改变运动神经元生理,使其能够抵抗变性,或者通过形成新的运动终板附件来补偿垂死的神经元。 。在当前的研究中,我们试图通过在体外培养ALS抵抗性运动神经元来表征其功能,从而能够直接评估动态细胞特性,例如生长,分支和细胞骨架调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号