首页> 美国卫生研究院文献>Network Neuroscience >High-resolution data-driven model of the mouse connectome
【2h】

High-resolution data-driven model of the mouse connectome

机译:鼠标连接器的高分辨率数据驱动模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Knowledge of mesoscopic brain connectivity is important for understanding inter- and intraregion information processing. Models of structural connectivity are typically constructed and analyzed with the assumption that regions are homogeneous. We instead use the Allen Mouse Brain Connectivity Atlas to construct a model of whole-brain connectivity at the scale of 100 μm voxels. The data consist of 428 anterograde tracing experiments in wild type C57BL/6J mice, mapping fluorescently labeled neuronal projections brain-wide. Inferring spatial connectivity with this dataset is underdetermined, since the approximately 2 × 105 source voxels outnumber the number of experiments. To address this issue, we assume that connection patterns and strengths vary smoothly across major brain divisions. We model the connectivity at each voxel as a radial basis kernel-weighted average of the projection patterns of nearby injections. The voxel model outperforms a previous regional model in predicting held-out experiments and compared with a human-curated dataset. This voxel-scale model of the mouse connectome permits researchers to extend their previous analyses of structural connectivity to much higher levels of resolution, and it allows for comparison with functional imaging and other datasets.
机译:介观的大脑连通性知识对于理解区域间和区域内的信息处理非常重要。结构连通性模型通常是在假设区域同质的前提下构建和分析的。取而代之的是,我们使用艾伦小鼠脑部连接图集构建了100微米体素规模的全脑连接模型。数据包括在野生型C57BL / 6J小鼠中进行的428次顺行性追踪实验,在全脑范围内绘制了荧光标记的神经元投影。由于大约2×10 5 源体素的数量超过了实验数量,因此无法确定与此数据集之间的空间连通性。为解决此问题,我们假设主要大脑部门之间的连接方式和强度变化不一。我们将每个体素的连通性建模为附近注射的投影模式的径向基核加权平均值。体素模型在预测暂留实验方面要优于先前的区域模型,并与人类策划的数据集进行比较。小鼠连接组的体素比例模型允许研究人员将其先前对结构连通性的分析扩展到更高的分辨率水平,并且可以与功能成像和其他数据集进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号