首页> 美国卫生研究院文献>Network Neuroscience >Sensitivity analysis of human brain structural network construction
【2h】

Sensitivity analysis of human brain structural network construction

机译:人脑结构网络构建的敏感性分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP), we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes.
机译:网络神经科学利用扩散加权磁共振成像和体层摄影术来量化人脑的结构连通性。但是,科学家和从业人员对不同的束线照相参数对构造的结构网络的影响缺乏清晰的了解。利用来自人类连接套项目(HCP)的扩散图像,我们可以表征结构图如何受到脑图谱的空间分辨率,束线学流线总数以及具有各种图形指标的灰质扩张的影响。我们演示了高度精炼的大脑碎片和少量流线的不合理组合可能会无意间导致具有孤立节点的断开网络模型。此外,我们提供的解决方案可显着降低生成断开网络的可能性。此外,对于不同的tractography参数,我们调查了各种图形指标在HCP受试者群体中所取值的分布。分析图形度量分布内单个主题的等级,我们发现图集比例变化对个体等级的影响不同。我们的工作为研究人员优化束线描记参数的选择提供了指导,并说明了在网络神经科学研究中得出的大脑生物学特性如何受到图集分割方案的选择的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号