首页>
美国卫生研究院文献>Royal Society Open Science
>Structured methods for parameter inference and uncertainty quantification for mechanistic models in the life sciences
【2h】
Structured methods for parameter inference and uncertainty quantification for mechanistic models in the life sciences
Parameter inference and uncertainty quantification are important steps when relating mathematical models to real-world observations and when estimating uncertainty in model predictions. However, methods for doing this can be computationally expensive, particularly when the number of unknown model parameters is large. The aim of this study is to develop and test an efficient profile likelihood-based method, which takes advantage of the structure of the mathematical model being used. We do this by identifying specific parameters that affect model output in a known way, such as a linear scaling. We illustrate the method by applying it to three toy models from different areas of the life sciences: (i) a predator–prey model from ecology; (ii) a compartment-based epidemic model from health sciences; and (iii) an advection–diffusion reaction model describing the transport of dissolved solutes from environmental science. We show that the new method produces results of comparable accuracy to existing profile likelihood methods but with substantially fewer evaluations of the forward model. We conclude that our method could provide a much more efficient approach to parameter inference for models where a structured approach is feasible. Computer code to apply the new method to user-supplied models and data is provided via a publicly accessible repository.
展开▼
机译:在将数学模型与实际观测值相关联以及估计模型预测中的不确定性时,参数推断和不确定性量化是重要的步骤。但是,执行此操作的方法在计算上可能很昂贵,尤其是在未知模型参数的数量很大时。本研究的目的是开发和测试一种有效的基于轮廓似然的方法,该方法利用了所使用的数学模型的结构。我们通过识别以已知方式影响模型输出的特定参数(例如线性缩放)来实现这一点。我们通过将其应用于来自生命科学不同领域的三个玩具模型来说明该方法:(i) 来自生态学的捕食者-猎物模型;(ii) 来自 Health Sciences 的基于隔室的流行病模型;(iii) 环境科学中描述溶解溶质传递的平流-扩散反应模型。我们表明,新方法产生的结果与现有的轮廓似然方法的准确性相当,但对正向模型的评估要少得多。我们得出的结论是,我们的方法可以为结构化方法可行的模型提供一种更有效的参数推理方法。将新方法应用于用户提供的模型和数据的计算机代码通过可公开访问的存储库提供。
展开▼