首页> 美国卫生研究院文献>ACS Omega >Shock-Induced Hot Spot Formation and Spalling in 135-trinitroperhydro-135-triazineContaining a Cube Void
【2h】

Shock-Induced Hot Spot Formation and Spalling in 135-trinitroperhydro-135-triazineContaining a Cube Void

机译:135-trinitroperhydro-135-triazine的休克诱导热点形成和剥落包含立方体空洞

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The initial reaction mechanism of energetic materials under impact loading and the role of crystal properties in impact initiation and sensitivity are still unclear. In this paper, we report reactive molecular dynamics simulations of shock initiation of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) crystals containing a cube void. Shock-induced void collapse, hot spots formation and growth, as well as spalling are revealed to be dependent on the shock velocity. The void collapse times are 1.5 and 0.7 ps, for the shock velocity of 2 and 4 km·s–1, respectively. Results indicate that the initial hot spot formation consists of two steps: one is the temperature rise caused by local plastic deformation and the other is the temperature increase resulting from the collision of upstream and downstream particles during the void collapse. Whether hot spots will continue to grow or quench depends on sensitive balance between energy release caused by local physical and chemical reactions and various heat dissipation mechanisms. In our simulations, hot spot would grow for Up = 4 km·s–1; hot spot is weak to some extent for Up = 2 km·s–1. The tensile wave reflected by the shock wave after reaching thefree surface causes the spalling, which depends on the initial shockvelocity. Typical spalling occurs for the shock velocity 2 km·s–1, while the tensile wave induces the microsplit regionin RDX crystals in the case of Up = 4km·s–1. Chemical reactions are studied forRankine–Hugoniot shock pressures Ps = 14.4, 57.8 GPa. For the weak shock, there is almost no decompositionreaction of the RDX molecules near the spalling region. On the contrary,there are large number of small molecule products, such as H2O, CO2, NO2, and so forth, around the microsplitregions for the strong shock. The ruptures of N–NO2 bond are the main initial reaction mechanisms for the shocked RDXcrystal and are not affected by shock strength, while the microsplitslows down the decomposition rate of RDX. The work in this paper canshed light on a thorough understanding of thermal ignition, hot spotgrowth, and other physical and chemical phenomena of energetic materialscontaining voids under impact loading.
机译:高能材料在冲击载荷下的初始反应机理以及晶体性质在冲击引发和敏感性中的作用仍不清楚。在本文中,我们报告了包含立方体空隙的1,3,5-trinitroperhydro-1,3,5-triazine(RDX)晶体的冲击引发反应的分子动力学模拟。震动引起的空隙塌陷,热点的形成和增长以及剥落均取决于震动速度。对于2和4 km·s –1 的冲击速度,空隙塌陷时间分别为1.5和0.7 ps。结果表明,最初的热点形成包括两个步骤:一个是局部塑性变形引起的温度升高,另一个是空隙塌陷过程中上游和下游颗粒碰撞导致的温度升高。热点是继续增长还是淬灭取决于局部物理和化学反应引起的能量释放与各种散热机制之间的敏感平衡。在我们的模拟中,热点将以Up = 4 km·s –1 的速度增长;当Up = 2 km·s –1 时,热点在某种程度上较弱。到达波峰后由冲击波反射的拉力波自由表面会导致剥落,这取决于初始冲击速度。冲击速度为2 km·s –1 时会发生典型的剥落,而拉伸波会引起微裂区在Up = 4的情况下在RDX晶体中km·s –1 。化学反应的研究Rankine–Hugoniot冲击压力Ps = 14.4,57.8 GPa。对于弱电,几乎没有分解RDX分子在剥落区域附近的反应。反之,微分裂周围有大量的小分子产物,例如H2O,CO2,NO2等区域为强烈震荡。 N–NO2键的断裂是震惊的RDX的主要初始反应机制晶体,不受冲击强度影响,而微裂放慢RDX的分解速度。本文的工作可以深入了解热点火,热点能量材料的生长以及其他物理和化学现象在冲击载荷下含有空隙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号