首页> 美国卫生研究院文献>Cardiology Research and Practice >Exploring Hypertrophic Cardiomyopathy Biomarkers through Integrated Bioinformatics Analysis: Uncovering Novel Diagnostic Candidates
【2h】

Exploring Hypertrophic Cardiomyopathy Biomarkers through Integrated Bioinformatics Analysis: Uncovering Novel Diagnostic Candidates

机译:通过综合生物信息学分析探索肥厚型心肌病生物标志物:发现新的诊断候选者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

HCM is a heterogeneous monogenic cardiac disease that can lead to arrhythmia, heart failure, and atrial fibrillation. This study aims to identify biomarkers that have a positive impact on the treatment, diagnosis, and prediction of HCM through bioinformatics analysis. We selected the GSE36961 and GSE180313 datasets from the Gene Expression Omnibus (GEO) database for differential analysis. GSE36961 generated 6 modules through weighted gene co-expression network analysis (WGCNA), with the green and grey modules showing the highest positive correlation with HCM (green module: cor = 0.88, p = 2e − 48; grey module: cor = 0.78, p = 4e − 31). GSE180313 generated 17 modules through WGCNA, with the turquoise module exhibiting the highest positive correlation with HCM (turquoise module: cor = 0.92, p = 6e − 09). We conducted GO and KEGG pathway analysis on the intersection genes of the selected modules from GSE36961 and GSE180313 and intersected their GO enriched pathways with the GO enriched pathways of endothelial cell subtypes calculated after clustering single-cell data GSE181764, resulting in 383 genes on the enriched pathways. Subsequently, we used LASSO prediction on these 383 genes and identified RTN4, COL4A1, and IER3 as key genes involved in the occurrence and development of HCM. The expression levels of these genes were validated in the GSE68316 and GSE32453 datasets. In conclusion, RTN4, COL4A1, and IER3 are potential biomarkers of HCM, and protein degradation, mechanical stress, and hypoxia may be associated with the occurrence and development of HCM.
机译:HCM 是一种异质性单基因心脏病,可导致心律失常、心力衰竭和心房颤动。本研究旨在通过生物信息学分析确定对 HCM 的治疗、诊断和预测有积极影响的生物标志物。我们从基因表达综合 (GEO) 数据库中选择了 GSE36961 和 GSE180313 数据集进行差异分析。GSE36961通过加权基因共表达网络分析 (WGCNA) 生成了 6 个模块,其中绿色和灰色模块与 HCM 的正相关度最高(绿色模块:cor = 0.88,p = 2e − 48;灰色模块:cor = 0.78,p = 4e − 31)。GSE180313通过 WGCNA 生成了 17 个模块,其中绿松石模块与 HCM 的正相关度最高(绿松石模块:cor = 0.92,p = 6e − 09)。我们对 GSE36961 和 GSE180313 中所选模块的交集基因进行了 GO 和 KEGG 通路分析,并将它们的 GO 富集通路与单细胞数据GSE181764聚类后计算的内皮细胞亚型的 GO 富集通路相交,得到 383 个基因在富集的通路上。随后,我们对这 383 个基因进行了 LASSO 预测,并确定 RTN4 、 COL4A1 和 IER3 是参与 HCM 发生和发展的关键基因。这些基因的表达水平在 GSE68316 和 GSE32453 数据集中进行了验证。综上所述,RTN4 、 COL4A1 和 IER3 是 HCM 的潜在生物标志物,蛋白质降解、机械应力和缺氧可能与 HCM 的发生发展有关。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号