首页> 美国卫生研究院文献>Bioengineering >Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole
【2h】

Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole

机译:机器学习和光学相干断层扫描衍生的影像组学分析预测全层黄斑裂孔的术后解剖结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Full-thickness macular hole (FTMH) leads to central vision loss. It is essential to identify patients with FTMH at high risk of postoperative failure accurately to achieve anatomical closure. This study aimed to construct a predictive model for the anatomical outcome of FTMH after surgery. A retrospective study was performed, analyzing 200 eyes from 197 patients diagnosed with FTMH. Radiomics features were extracted from optical coherence tomography (OCT) images. Logistic regression, support vector machine (SVM), and backpropagation neural network (BPNN) classifiers were trained and evaluated. Decision curve analysis and survival analysis were performed to assess the clinical implications. Sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUC) were calculated to assess the model effectiveness. In the training set, the AUC values were 0.998, 0.988, and 0.995, respectively. In the test set, the AUC values were 0.941, 0.943, and 0.968, respectively. The OCT-omics scores were significantly higher in the “Open” group than in the “Closed” group and were positively correlated with the minimum diameter (MIN) and base diameter (BASE) of FTMH. Therefore, in this study, we developed a model with robust discriminative ability to predict the postoperative anatomical outcome of FTMH.
机译:全层黄斑裂孔 (FTMH) 导致中央视力丧失。准确识别术后失败风险高的 FTMH 患者以实现解剖闭合至关重要。本研究旨在构建术后 FTMH 解剖结果的预测模型。进行了一项回顾性研究,分析了 197 名诊断为 FTMH 的患者的 200 只眼睛。影像组学特征是从光学相干断层扫描 (OCT) 图像中提取的。对 Logistic 回归、支持向量机 (SVM) 和反向传播神经网络 (BPNN) 分类器进行了训练和评估。进行决策曲线分析和生存分析以评估临床意义。计算敏感性、特异性、 F1 评分和受试者工作特征曲线下面积 (AUC) 以评估模型的有效性。在训练集中,AUC 值分别为 0.998 、 0.988 和 0.995 。在测试集中,AUC 值分别为 0.941 、 0.943 和 0.968 。“开放”组的 OCT 组学评分显著高于“封闭”组,并且与 FTMH 的最小直径 (MIN) 和基径 (BASE) 呈正相关。因此,在这项研究中,我们开发了一个具有强大判别能力的模型来预测 FTMH 的术后解剖结果。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号