首页> 美国卫生研究院文献>mSphere >Identification and characterization of archaeal-type FAD synthase as a novel tractable drug target from the parasitic protozoa Entamoeba histolytica
【2h】

Identification and characterization of archaeal-type FAD synthase as a novel tractable drug target from the parasitic protozoa Entamoeba histolytica

机译:古细菌型 FAD 合酶作为寄生原生动物溶组织内阿米巴的新型可处理药物靶点的鉴定和表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flavin adenine dinucleotide (FAD) is an essential cofactor for numerous flavoenzymes present in all living organisms. The biosynthesis of FAD from riboflavin involves two sequential reactions catalyzed by riboflavin kinase and flavin adenine dinucleotide synthase (FADS). Entamoeba histolytica, the protozoan parasite responsible for amebiasis, apparently lacks a gene encoding FADS that share similarity with bacterial and eukaryotic canonical FADS, yet it can synthesize FAD. In this study, we have identified the gene responsible for FADS and thoroughly characterized physiological and biochemical properties of FADS from E. histolytica. Phylogenetic analysis revealed that the gene was likely laterally transferred from archaea. The kinetic properties of recombinant EhFADS were consistent with the notion that EhFADS is of archaeal origin, exhibiting KM and kcat values similar to those of the arachaeal enzyme while significantly differing from the human counterpart. Repression of gene expression of EhFADS by epigenetic gene silencing caused substantial reduction in FAD levels and parasite growth, underscoring the importance of EhFADS for the parasite. Furthermore, we demonstrated that EhFADS gene silencing reduced thioredoxin reductase activity, which requires FAD as a cofactor and makes the ameba more susceptible to metronidazole. In summary, this study unveils unique evolutionary and biochemical features of EhFADS and underscores its significance as a promising drug target in combating human amebiasis.
机译:黄素腺嘌呤二核苷酸 (FAD) 是所有生物体中存在的许多黄素酶的重要辅助因子。核黄素中 FAD 的生物合成涉及核黄素激酶和黄素腺嘌呤二核苷酸合酶 (FADS) 催化的两个连续反应。溶组织内阿米巴是导致阿米巴病的原生动物寄生虫,显然缺乏编码 FADS 的基因,这些基因与细菌和真核生物经典 FADS 相似,但它可以合成 FAD。在这项研究中,我们确定了导致 FADS 的基因,并彻底表征了溶组织球菌 FADS 的生理生化特性。系统发育分析显示,该基因可能是从古细菌横向转移的。重组 EhFADS 的动力学特性与 EhFADS 起源于古细菌的观点一致,表现出与蛛毛酶相似的 KM 和 kcat 值,但与人类对应物显着不同。通过表观遗传基因沉默抑制 EhFADS 的基因表达导致 FAD 水平和寄生虫生长的显著降低,强调了 EhFADS 对寄生虫的重要性。此外,我们证明 EhFADS 基因沉默降低了硫氧还蛋白还原酶活性,这需要 FAD 作为辅助因子,并使阿米巴更容易受到甲硝唑的影响。总之,本研究揭示了 EhFADS 独特的进化和生化特征,并强调了其作为对抗人类阿米巴病的有前途的药物靶点的重要性。

著录项

  • 期刊名称 mSphere
  • 作者单位
  • 年(卷),期 2024(9),9
  • 年度 2024
  • 页码 e00347-24
  • 总页数 22
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:、原生动物、黄素腺嘌呤二核苷酸、FAD 合酶、辅因子、核黄素激酶、基因沉默、药物靶标;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号