首页> 美国卫生研究院文献>Journal of Vision >TORONTO: A trial-oriented multidimensional psychometric testing algorithm
【2h】

TORONTO: A trial-oriented multidimensional psychometric testing algorithm

机译:多伦多:一种面向试验的多维心理测试算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bayesian adaptive methods for sensory threshold determination were conceived originally to track a single threshold. When applied to the testing of vision, they do not exploit the spatial patterns that underlie thresholds at different locations in the visual field. Exploiting these patterns has been recognized as key to further improving visual field test efficiency. We present a new approach (TORONTO) that outperforms other existing methods in terms of speed and accuracy. TORONTO generalizes the QUEST/ZEST algorithm to estimate simultaneously multiple thresholds. After each trial, without waiting for a fully determined threshold, the trial-oriented approach updates not only the location currently tested but also all other locations based on patterns in a reference data set. Since the availability of reference data can be limited, techniques are developed to overcome this limitation. TORONTO was evaluated using computer-simulated visual field tests: In the reliable condition (false positive [FP] = false negative [FN] = 3%), the median termination and root mean square error (RMSE) of TORONTO was 153 trials and 2.0 dB, twice as fast with equal accuracy as ZEST. In the FP = FN = 15% condition, TORONTO terminated in 151 trials and was 2.2 times faster than ZEST with better RMSE (2.6 vs. 3.7 dB). In the FP = FN = 30% condition, TORONTO achieved 4.2 dB RMSE in 148 trials, while all other techniques had > 6.5 dB RMSE and terminated much slower. In conclusion, TORONTO is a fast and accurate algorithm for determining multiple thresholds under a wide range of reliability and subject conditions.
机译:用于感觉阈值确定的贝叶斯自适应方法最初被设想为跟踪单个阈值。当应用于视觉测试时,它们不会利用视野中不同位置阈值的基础空间模式。利用这些模式已被公认为进一步提高视野测试效率的关键。我们提出了一种新方法 (TORONTO),它在速度和准确性方面优于其他现有方法。TORONTO 将 QUEST/ZEST 算法推广为同时估计多个阈值。每次试验后,无需等待完全确定的阈值,面向试验的方法不仅会更新当前测试的位置,还会根据参考数据集中的模式更新所有其他位置。由于参考数据的可用性可能受到限制,因此开发了克服此限制的技术。使用计算机模拟视野测试对 TORONTO 进行评估:在可靠条件下(假阳性 [FP] = 假阴性 [FN] = 3%),TORONTO 的中位数终止和均方根误差 (RMSE) 为 153 次试验和 2.0 dB,速度是 ZEST 的两倍,精度相同。在 FP = FN = 15% 条件下,TORONTO 在 151 次试验中终止,比具有更好 RMSE 的 ZEST 快 2.2 倍(2.6 对 3.7 dB)。在 FP = FN = 30% 条件下,多伦多在 148 次试验中实现了 4.2 dB RMSE,而所有其他技术都> 6.5 dB RMSE,并且终止速度要慢得多。总之,TORONTO 是一种快速准确的算法,用于在广泛的可靠性和主题条件下确定多个阈值。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号